

Appendix 2 to BOT Scope Book

High Voltage Overhead Transmission

Rev. 1

June 6, 2024

REVISION RECOR	RD		
Revision No.	Approval Date	Section / Page	Reason / Description of Change
		Revised	
0	9/14/2023	All	Initial Issue
1	6/6/24	9.3.8.1	Updated maximum wind speed to 150 mph

APPENDIX 2

TO BOT SCOPE BOOK

HIGH VOLTAGE OVERHEAD TRANSMISSION

TABLE OF CONTENTS

	Append	endix 2: High Voltage Overhead Transmission1							
1	INTRO	DUCTIO	N1						
	1.1	Purpos	pose1						
	1.2	Scope.							
	1.3	Genera	I Data1						
	1.4	Deviation	ons2						
2	DEFINI	TIONS .	2						
	2.1	Definition	ons2						
	2.2	Acrony	ms and Abbreviations2						
3	REFER	ENCES	AND DOCUMENTS						
	3.1	Industry	y Standards3						
		3.1.1	Materials5						
4	SAFET	y and e	ENVIRONMENT5						
	4.1	Safety.	5						
	4.2	Avian D	Design5						
	4.3	Future	Impacts5						
5	LOAD		IATIONS						
	5.1	Loading	g Combinations						
		5.1.1	District Maps						
		5.1.2	Load Cases - Summary6						
		5.1.3	Loads – Structure Analysis						
		5.1.4	Stringing Loads on Custom Davit and Cross Arms7						
		5.1.5	NESC Load Cases with OCF = 1.07						
		5.1.6	Special Load Cases - Structure Analysis7						
		5.1.7	Single Dead-End and Failure Containment (Dead-End Structures)7						
		5.1.8	Stringing Longitudinal Unbalanced Load (Tangents & Run. Angles)7						
		5.1.9	Pole without Conductors (NESC 261A1c) (Guyed Poles)7						
		5.1.10	Stringing loads on Dead-Ends7						

		5.1.11	PLS Wind Direction for Structure Loading	7
	5.2	Load C	Cases – Clearance Verification	8
	5.3	Load C	Cases – Wire Stringing	9
	5.4	Load F	actor and Strength Reduction	9
6	CLEAF	RANCE	AND RIGHT OF WAY REQUIREMENTS	10
	6.1	Vertica	al Clearance – Over Ground	10
	6.2	Other \	Vertical Clearances	11
		6.2.1	Supply Conductors (69 kV and above)	11
		6.2.2	Substations	11
		6.2.3	Miscellaneous	11
	6.3	Horizo	ntal Clearance	12
		6.3.1	Adjacent Supply Lines	12
		6.3.2	Adjacent Buildings and other Structures	12
		6.3.3	Insulator/Conductor Swing Clearance	12
		6.3.4	Right of Way Requirements	12
7	COND	UCTOR	AND SHIELD WIRE INFORMATION	
	7.1	Enterg	y Standard Conductors	18
	7.2	Standa	ard Shield Wires	21
	7.3	Standa	ard Optical Ground Wires	22
	7.4	Bundle	ed Conductors	23
		7.4.1	Bundled Conductors (New Construction, excluding 500 kV)	23
		7.4.2	Bundled Conductors (500 kV)	23
	7.5	Sag ar	nd Tension Limitations	23
		7.5.1	NESC Tension Limits	23
		7.5.2	Tension Limits for Vibration Control	24
		7.5.3	Vibration Control for Long Spans Exceeding the Ruling Span	
	7.6	Correc	tion to Sag when Final Installation is Interrupted	26
	7.7	Gallop	ing	26
	7.8	Aeoliar	n Vibration	27
	7.9	Condu	ctor Corona	27
	7.10	ACSS	and ACSS/TW Conductor	27
		7.10.1	ACSS Sags – Tensions - Stringing	27
	7.11	Fiber C	Dptic/Shield Wire Requirements	27
		7.11.1	Fiber Optic Details	28
		7.11.2	Splice Box Locations	28
	7.12	SW Sa	agging Relative to Conductors	28
	7.13	Condu	ctor and Shield Wire Marking	28

		7.13.1	Aerial Patrol Marking	28
		7.13.2	Marking for Federal Aviation Administration (FAA) regulations	28
		7.13.3	Navigable Waterway Marking	28
		7.13.4	Avian	29
		7.13.5	Slow-Moving Vehicle Signs	29
		7.13.6	Spiral Vibration Dampers (Yellow)	29
		7.13.7	QuikMark Devices	29
		7.13.8	QuikMark Devices Combined with Spiral Vibration Dampers	29
8	OTHER	R ELECT	FRICAL CRITERIA	30
	8.1	Electric	cal Insulation	30
		8.1.1	Insulator Swing	30
	8.2	Transm	nission Line Lightning Protection Design	33
		8.2.1	Reference Guides	33
		8.2.2	GFD	34
		8.2.3	Structure BIL	34
		8.2.4	Shield Wire Installation	34
		8.2.5	Shield Wire Type and Size	34
		8.2.6	Shielding Angle	34
		8.2.7	Maximum Grounding Resistance	35
		8.2.8	Lightning Arrestors	35
	8.3	Ground	ling and Cathodic Protection	35
		8.3.1	Grounding	35
		8.3.2	Cathodic Protection	37
		8.3.3	Structure Protection	37
9	STRUC	CTURE [DESIGN CRITERIA	38
	9.1	Steel P	oles	38
		9.1.1	Tubular Steel Pole Purchase Specification	38
		9.1.2	General Design Requirements	38
		9.1.3	Procurement	40
		9.1.4	Structure Hardware	40
		9.1.5	Grounding and Cathodic Protection	40
		9.1.6	Hybrid Structures	40
	9.2	Concre	te Poles	40
		9.2.1	Spun Pre-stressed Concrete Pole Purchase Specification	40
		9.2.2	General Design Requirements	41
		9.2.3	Procurement	42

		9.2.4	Structure Hardware			
	9.3	H-Fram	e Design	42		
		9.3.1	Structure Types	43		
		9.3.2	Cross Arm Design	43		
		9.3.3	Cross Arm Assembly Details	43		
		9.3.4	Rock Anchors	44		
		9.3.5	Expanding Rock Anchors	44		
		9.3.6	Grouted Rock Anchors	44		
		9.3.7	Guying Hardware	44		
		9.3.8	Guyed Structure Limitations	47		
	9.4	Spacing	g of Dead-End Structures	47		
	9.5	Consid	rations at Major Crossings			
10	STRUC	TURE F	OUNDATIONS	48		
	10.1	Soil Info	ormation	49		
	10.2	Design	Methodology – Lateral Load	49		
		10.2.1	Program Description	49		
		10.2.2	General Acceptance Criteria	49		
	10.3	Founda	ition Types	50		
		10.3.1	Basic Foundation Types	50		
		10.3.2	Grounding and Cathodic Protection	50		
11	ATTAC	HMENT	S	50		

1 INTRODUCTION

1.1 Purpose

This Appendix 2 to the Scope Book (this "Appendix 2") provides design requirements and reference material for the design of the high voltage ("HV") (69 kV and above) overhead transmission lines that will be built and/or connected to the Entergy transmission system by or for Seller as part of the Project ("Transmission Lines"). This document pertains to the transmission line between the collector substation and the deadend structure delivered by the GIA. This document is intended to provide to Seller and others acting at Seller's request requirements, recommendations, and guidance in the planning, design, construction, asset management, use, and operation of the Transmission Lines.

1.2 Scope

This Appendix 2 applies to all Transmission Lines.

This Appendix 2 primarily describes technical requirements, both performance-based and prescriptive for the design and installation of the Transmission Lines. Refer to the Scope Book and other parts of the Agreement for information regarding project sequencing and milestones, the project execution plan, project schedule and schedule management, project controls reporting, health and safety information, factory acceptance tests, training, required submittals, design reviews, equipment records, specified deliverables, project documentation, and other relevant matters not covered by this Appendix 2.

1.3 General Data

This Appendix 2 addresses aspects of the Work relating to the Transmission Lines. It is not intended to be, and shall not be construed to be, a comprehensive list of each and every element or other requirement applicable to the Work and shall in no way limit Seller's obligations under the Agreement or any Ancillary Agreement. Without limiting the other terms of the Agreement or any Ancillary Agreement. Without limiting the other terms of the Agreement or any Ancillary Agreement, in performing the Work relating to the Transmission Lines, Seller shall comply with, and cause its Contractors and Subcontractors to comply with, the terms of this Appendix 2, all Laws (including codes) and applicable Permits.

This Appendix 2 provides the minimum functional specification ("MFS") for the Transmission Lines, including scope and design requirements. In addition to the requirements set forth in the Agreement (including the Scope Book), the Transmission Lines shall comply with all requirements specified in the GIA or any other Required Deliverability Arrangement.

This Appendix 2 is part of the Scope Book.

Article, Section, Table, Figure, and Attachment references in this Appendix 2 are to this Appendix 2 unless otherwise provided or the context otherwise requires.

1.4 Deviations

Any deviations from the MFS for the Transmission Lines or the terms of this Appendix 2 shall require Buyer's prior approval and will be subject to the terms of the Agreement.

2 **DEFINITIONS**

2.1 Definitions

BIL - Basic Lightning Impulse Insulation Level is a reference insulation level in terms of the crest voltage of a standard lightning impulse.

Conductor Displacement - With respect to clearances, conductor displacement is the conductor movement, including the effects of insulator swing and structure deflection, due to a prescribed ice, wind, or thermal load case. With respect to right-of-way ("ROW") determinations, conductor displacement is the maximum horizontal conductor displacement from its initial unloaded position, including the effects of insulator swing and structure deflection due to the extreme wind load case. See also (WCD) in Figure 6.3.4.1-3.

Conductor Movement Envelope - With respect to clearances, the conductor movement envelope is the full range of conductor positions in the prescribed ice, wind, or thermal load cases. With respect to ROW determinations, the conductor movement envelope is the full range of conductor movement, including the effects of insulator swing and structure deflection due to the extreme wind load case applied from both directions, and including the initial effective structure width. See also (WCME) in Figure 6.3.4.1-3.

Designer – Individual (in-house or contractor) responsible for analyzing and selecting transmission line components, structures, or foundations.

Effective Structure Width – the width between a structure's outboard conductors (e.g., for an H-frame configuration, it is twice the phase spacing, and for a vertical conductor configuration it is effectively zero). See also (wS) in Figure 6.3.4.1-3.

LIDAR (Light Detection and Ranging) – A method of detecting and determining the position, velocity, or other characteristics of distant objects by analysis of pulsed laser light reflected from the surfaces of such objects.

Meridian – Electronic document management system used to archive transmission standards and documents and track revisions.

PLS-CADD – A software package used during optimization of pole spotting, design analysis, and the development of material lists.

Vegetation Management Width – Right of way width outside of the conductor movement envelope, purchased solely for establishment of a vegetation management cycle. See (WVM) in Figure 6.3.4.1-1 and Figure 6.3.4.1-2.

2.2 Acronyms and Abbreviations

ACAR Aluminum Conductor Alloy Reinforced

- ACCC Aluminum Conductor Composite Core
- ACCR Aluminum Conductor Composite Reinforced
- ACSR Aluminum Conductor Steel Reinforced
- ACSS Aluminum conductor Steel Supported
- BIL Basic Lightning Impulse Insulation Level
- EPRI Electric Power Research Institute
- FAA Federal Aviation Administration
- FAD Foundation Analysis & Design
- GFD Ground Flash Density
- IEEE Institute of Electrical and Electronics Engineers
- LIDAR Light Detection and Ranging
- MFAD Moment Foundation Analysis & Design
- MVATD Minimum Vegetation Action Threshold Distance
- MVCD Minimum Vegetation Clearance Distance
- NESC National Electrical Safety Code
- OCF Overload Capacity Factor
- ROW Right of Way
- SRF Strength Reduction Factor
- UBS Ultimate Breaking Strength

3 REFERENCES AND DOCUMENTS

3.1 Industry Standards

The following Industry Standards are referenced in this Appendix 2:

ASCE MOP 91	Design of Guyed Electrical Transmission Structures
ASCE MOP 123	Prestressed Concrete Transmission Pole Structures
ASCE 48	Design of Steel Transmission Pole Structures

ASCE 74	Guidelines for Electrical Transmission Line Structural Loading			
ANSI C2	National Electric Safety Code (NESC)			
IEEE Std 80	IEEE Guide for Safety in AC Substation Grounding			
IEEE Std 524	Guide to the Installation of Overhead Transmission Line Conductors			
IEEE Std 738	Standard for Calculating the Current-Temperature of Bare Overhead Conductors			
IEEE Std 1313.2	Guide for the Application of Insulation Coordination			
IEE Std 1542	Guide for Installation, Maintenance, and Operation of Irrigation Equipment Located Near or Under Power Lines			
APLIC 2012	Reducing Avian Collisions with Power Lines – State of the Art– 2012			
APLIC 2006	Suggested Practices for Avian Protection on Power Lines			
NACE RP0177	Mitigation of Alternating Current and Lightning Effects of Metallic Structures and Corrosion Control System			
OSHA Std 2207, Part 1926	Safety and Health Regulations for Construction			
IEEE 738	Standard for Calculating Current-Temperature Relationship of Bare Conductors			
IEEE Std. 1243-1997	Guide for Improving the Lightning Performance of Transmission Lines			
EPRI	Handbook for Improving Overhead Transmission Line Lightning Performance			
EPRI	AC Transmission Line Reference Book - 200kV and Above			
EPRI	Guide for Transmission Line Grounding			
EPRI	Outline of Guide for Application of Transmission Line Surge Arrestors – 42 to 765 kV			
	Pre-stressed Concrete Institute Guide Specifications			
	FAA Advisory Circular AC 70/7460-1K, Obstruction Marking and Lighting			

The latest issued Standards and Codes at the issuance of the effective date of the Agreement shall be used. Earlier editions are not allowed unless specifically identified in this Appendix 2.

If a revision to a standard or code is issued, it is not required to be implemented unless the Authority Have Jurisdiction (AHJ) has adopted it, in which case, Seller is obligated to any increased compliance above what is required by the Standards and Codes at the effective date of the Agreement. This risk is borne by Seller.

3.1.1 Materials

Seller shall use the descriptions of materials set out in the standard drawings provided in Attachment 1 along with the Approved Vendor List in Attachment 5 to procure the equipment, materials, systems, and other items required for the development, engineering, design, procurement, construction, testing, commissioning, use, and operation of the Transmission Lines in accordance with the terms of the Agreement.

4 SAFETY AND ENVIRONMENT

4.1 Safety

The safety of individuals, the Project, and other life or property in the development, engineering, design, procurement, construction, testing, commissioning, use, and operation shall be the Designer's highest priority.

4.2 Avian Design

The primary issues to consider for avian protection on transmission lines are clearances, marking, and nests. Transmission clearances for all voltages shall exceed the established minimums, shown in Attachment 2. Where Entergy standard structure configurations, shown in Attachment 1, are used, the design will meet the guidelines. Marking of wires is addressed in Section 7.13.4 and is to be done only in areas where such marking is required by authorized wildlife agencies, Laws, or applicable Permits.

4.3 Future Impacts

Proper consideration shall be given to working space and access during siting to address direct impacts on both work safety and the need for environmental remediation. Similarly, proper consideration shall be given to the ability to re-conductor a line vs. rebuilding to address the potential considerable ecological benefits.

5 LOAD COMBINATIONS

5.1 Loading Combinations

This section covers the transmission line load cases and load case combinations to be used in the design of the Transmission Lines for the Project. It also includes the Overload Capacity Factors ("OCF") and Strength Reduction Factors ("SRF") used to calculate forces on the individual components of each structure within the Transmission Lines. The load combinations below are consistent with the loading requirements of NESC Rule 250; however, the boundaries for loading areas have been shifted from those in NESC Rule 250. All references to NESC 250B, 250C, and 250D refer to the District Loading, Extreme Wind, and Concurrent Ice and Wind as modified based on these shifts in loading areas.

5.1.1 District Maps

Based on the NESC figures, districts were established along county and parish boundaries which envelope the NESC requirements. These boundaries were further modified to address other commitments and past operating experience. Notably: several coastal parishes and counties have design wind speeds increased

to 150 mph to address hardening study recommendations and other commitments; roughly the NW half of Arkansas has been treated as NESC Heavy rather than NESC Medium based upon past operating experience and design practice; and the 1" ice loading was extended throughout Arkansas and much of northern Mississippi based on extensive damage from past ice storms. They are collectively presented as **Error! Reference source not found.** illustrating the enveloping districts as follows:

Transmission Line Designers shall use the most conservative loading requirements required along the entire line if the line crosses several counties or parishes requiring different loadings. Exception to this requirement may be taken where a containment structure is placed at the district boundary.

5.1.2 Load Cases - Summary

Table 5.1.2 summarizes the various load cases used to design and analyze structures.

Description	Wind Loading	Ice Loading	Temperature	NESC Ref.
NESC 250B District Loading				
Heavy	4 psf	0.50 in.	0°F (-20°C)	250B, Table 250-1
Medium	4 psf	0.25 in.	15°F (-10°C)	250B, Table 250-1
Light	9 psf	0.00 in.	30°F (-1°C)	250B, Table 250-1
NESC 250C Extreme Wind				
100 mph	25.6 psf	0.00 in.	60°F (15°C)	250C, Table 250-1
110 mph	31.0 psf	0.00 in.	60°F (15°C)	250C, Table 250-1
125 mph	40.0 psf	0.00 in.	60°F (15°C)	250C, Table 250-1
140 mph	50.2 psf	0.00 in.	60°F (15°C)	250C, Table 250-1
150 mph	57.6 psf	0.00 in.	60°F (15°C)	250C, Table 250-1
NESC 250D Concurrent Ice and Wind				
0.5 in.	2.3 psf	0.50 in.	15°F (-10°C)	250D, Table 250-1
0.75 in.	2.3 psf	0.75 in.	15°F (-10°C)	250D, Table 250-1
1.0 in.	2.3 psf	1.00 in.	15°F (-10°C)	250D, Table 250-1
Cold Case – Uplift	0 psf	0.00 in.	0°F (-20°C)	
Every Day – Deflection	0 psf	0.00 in.	60°F (15°C)	
Unbalanced	See Section 5.1.4	See Section 5.1.4	60°F (15°C)	See Section 5.1.4

Table 5.1.2 – Structural Load Cases

5.1.3 Loads – Structure Analysis

In addition to the cases in Table 5.1.2, the following load cases shall be used in the analysis and structure design of all Transmission Line structures.

5.1.4 Stringing Loads on Custom Davit and Cross Arms

For arms, the everyday load case shall include a vertical load of 5000 lbs. suspended from the ends of each arm (to address vertical construction loads). The described vertical load is an allowance for steep stringing angles and other construction loads.

5.1.5 NESC Load Cases with OCF = 1.0

In addition to the standard NESC Overload Capacity Factors, all concrete structures shall have loads applied for NESC Load Cases with OCF = 1.0.

5.1.6 Special Load Cases - Structure Analysis

The following load cases shall be used in the analysis and structure design of the following structure types.

5.1.7 Single Dead-End and Failure Containment (Dead-End Structures)

All wires up, One Side Only Loading, Initial or Final Condition using the Structural Load Cases in Table 5.1.2.

5.1.8 Stringing Longitudinal Unbalanced Load (Tangents & Run. Angles)

0 mph Wind & 0" Ice, 60°F (15°C), Initial (Everyday Loads) with 3000 lb. Longitudinal Force (1000 lb. per phase) or with 2000 lb. Longitudinal Force per conductor (H-Frames only).

5.1.9 Pole without Conductors (NESC 261A1c) (Guyed Poles)

Extreme Wind applied on pole in any direction.

5.1.10 Stringing loads on Dead-Ends

Everyday loads on one side only (0 mph wind, 0" ice, 60F (15C), Initial.

5.1.11 PLS Wind Direction for Structure Loading

Designers shall conservatively use wind applied normal to all spans simultaneously when selecting structures for new designs.

5.2 Load Cases – Clearance Verification

The following clearance load cases shall be included to check vertical and horizontal clearances. "Line Design Clearances" are shown in Attachment 2.

Description	Wind Loading	Ice Loading	Temp.	NESC Ref.	Condition	Clearance Check
		g				
Max. Temp. (ACSR)	0 psf	0 in.	212°F (100°C)	232A	Final	Vertical Clearance
Max. Temp (ACSS & ACCC)	0 psf	0 in.	347°F (175°C)	232A	Final	Vertical Clearance
Max. Temp (ACAR)	0 psf	0 in.	176°F (80°C)	232A	Final	Vertical Clearance
NESC Zone						
Heavy	4 psf	0.5 in.	0°F (-20°C)	230B, Table 230-1, Table 230-2	Final	
Heavy Ice	0 psf	1.0in	32°F (0°C)	232A	Final	Vertical clearance to ground, other conductors, and structures
Medium Wind	6 psf	0 in.	60°F (15°C)	234A2	Initial and Final	Horizontal clearance to ground, other conductors and structures.
High Wind (ROW)	Extreme Wind from Table 5.1.2	0.0 in.	60°F (15°C)		Final	Horizontal Clearance to Edge of Right-of-Way
High Wind (Horizontal. Clearance)	100 mph	0.0in.	60°F (15°C)		Final	Insulator swing and Conductor movement (See Section 6.3.3 for more information)
No Wind	0 psf	0.00 in.	60°F (15°C)		Initial and Final	Horizontal clearance to ground, other

Table 5.2.1 – Clearance Load Cases

Description	Wind Loading	Ice Loading	Temp.	NESC Ref.	Condition	Clearance Check
						conductors and structures.

5.3 Load Cases – Wire Stringing

The following load cases shall be used to calculate stringing tensions for conductors and shield wires.

Conductor & Shield Wire Stringing Tensions

0 mph Wind, 0" Ice, 60°F (15°C), Initial & Final Stringing Temperature – 10 to 120°F (-12 to 49°C)

5.4 Load Factor and Strength Reduction

Overload Capacity Factors (OCF) shall be coordinated with the appropriate Strength Reduction Factors (SRF) and confirm that material strengths are presented as ultimate or working material strengths.

Table 5.4A – NESC & Entergy Design Overload Capacity Factors (OCF)

LOAD CASE	VERT (OCF)	WIND (OCF)	TENSION (OCF)	CODE REF.
	(001)	(001)	(00)	
Structural Analysis				
NESC Zone Loading (Intact)	1.5	2.5	1.65	253-1
Extreme Wind - (Intact)	1	1	1	
Concurrent Ice & Wind – (Intact)	1	1	1	
Unbalanced – (Intact)	1	1	1	
Single DE NESC Failure Containment	1.5	2.5	1.65	
Single DE Extreme Wind & Heavy Ice	1	1	1	
Cold Case – for Uplift	1	1	1	
Every Day Loads – for Deflection	1	1	1	
Clearance Calculations				
Clearance – Vertical – Heavy Ice (NESC)	1	1	1	232A3
Clearance – Vertical – Max. Temp. (NESC)	1	1	1	232A2
Clearance – Vertical – Static (NESC)	1	1	1	
Clearance – Horizontal Med. Wind – (NESC)	1	1	1	234A2
Clearance – Horizontal R/W – Entergy Max. Wind	1	1	1	

Structure Component	SRF NESC Loads (250B)	SRF Extreme Wind and Ice Loads (250C & 250D)	NESC Code Reference
Steel & Pre-stressed Concrete	1.0	1.0	Rule 261-A, Table 261-1
Structures			
Foundation & Guy Anchors	1.0	1.0	Rule 261-B, Table 261-1
Guys & Guy Insulator	0.9	0.9	Rule 261-C& 264, Tab. 261-1
Steel Crossarms & Braces	0.9	0.9	Rule 261-D1, Table 261-1
DE Fittings, Splices & Hardware ⁽³⁾	1.0	0.8	Rule 261-H2C
Support Hardware ⁽²⁾	1.0	1.0	Rule 261-D-1, Table 261-1
Insulators – Suspension	0.50	0.65	Table 277-1 ⁽⁴⁾
Insulators – Post	0.50	0.50	Table 277-1 ⁽⁴⁾
Conductor & Shield Wire	(1)	(1)	Rule 261-H1

Table 5.4B -	Strenath	Reduction	Factors	(SRF)
	•			()

(1) Conductor and shield wire maximum wire tensions are taken from NESC Code Section 261- H1.

(2) Support hardware includes bolts and plates supporting davit arms, braced post and post insulators, brackets, suspension tees and other miscellaneous supports not supporting conductor or shield wire deadends. The reduction factors shown are multiplied by the ultimate strength of the part as indicated by the manufacturer.

(3) Dead-end fittings include bolts and dead-end tees used to dead-end conductors and shield wires. The manufacturer generally gives the ultimate strength of the tees. This value is then reduced by the reduction factor shown. The "minimum tensile strength" shown for bolts by the Vendor is the allowable tensile load that shall be used on the bolt without the combined load of shear produced in a guyed structure. These loads are not reduced by the reduction factor; however, the shear values given shall be reduced depending on the actual tensile stress, in accordance with the interaction equation.

(4) NESC 2017

6 CLEARANCE AND RIGHT OF WAY REQUIREMENTS

This section covers vertical and horizontal clearance requirements for the Transmission Lines, which include NESC vertical and horizontal clearance requirements from Section 23 of the 2017 Code or counterpart for subsequent codes for HV transmission lines in Entergy's Service Area plus an added safety buffer, as described below.

6.1 Vertical Clearance – Over Ground

NESC and Entergy vertical clearances over various ground surfaces are shown in Attachment 2. These clearances are based on the 2017 Code, Table 232-1, with the voltage adder defined in Rule 232C1a, using the sags calculated under Rules 232A2 and 232A3.

See Section Error! Reference source not found. for Clearance Load Cases.

The actual clearance to ground shall be based on the measurement to ground at the low point in the line as determined when the line is at maximum sag. For purposes of determining the required clearance for the Transmission Lines,

NESC Clearance = Table 232-1 Clearance + Voltage Adder (.4"/kV in excess of 22kV)

Entergy-Required Minimum Clearance = NESC Clearance + Safety Buffer

NESC provides consideration for clearances over water surfaces, including floodwaters. Footnotes 17-21 to Table 232-1 shall be carefully considered when determining necessary clearances. For flood-prone areas that do not typically have standing surface water and are not subject to USACE or other permits, the normal flood level (10-year flood level) shall be considered along with required clearances for areas not suitable for boating. For most spans over such areas, clearances that consider or are based on vehicle access with un-flooded ground surfaces will continue to apply. Lines leading into generating facilities, EHV interconnections, or other lines where increased reliability is desired shall consider less frequent flood events (e.g., 50-year floods or 100 year floods) to avoid potential service interruptions. Such lines shall be designed to higher flood levels where the incremental costs are justified and will generally be compared to NESC requirements for water surface not suitable for sailboats.

6.2 Other Vertical Clearances

6.2.1 Supply Conductors (69 kV and above)

NESC and Entergy vertical clearances between various electricity supply lines and non-current carrying wires are also shown in Attachment 2. These clearances are based on the 2017 Code, Table 233-1, with the voltage adder defined in Rule 233C2a, using the sags calculated under Rules 233A1a (3)(b) and 233A1a (3)(c).

The design clearance shall be measured as the distance between the field measured existing line and the design maximum sag.

The Entergy-Required Minimum Clearance: NESC Clearance + Safety Buffer

Attachment 2 shows the minimum vertical clearances over various ground surfaces and uses.

The line Designer shall establish "Prohibitive Zones" with the appropriate Design Clearances on the plan profiles within PLS-CADD in the areas where these considerations occur. Considerations could be but not limited to environmental, archaeological, landowner constraints, etc.

6.2.2 Substations

Transmission line vertical clearances inside substations shall meet the vertical clearance requirements shown in Attachment 2.

6.2.3 Miscellaneous

To every extent possible, ROW shall be selected, and ROW agreements written, to preclude structures, signage, and other miscellaneous items from being located beneath the transmission circuits. To the extent such items cannot be so precluded, the vertical clearances for the Transmission Line shall meet the basic

NESC clearance requirements for each applicable clearance set forth in Attachment 2, plus an additional 4.5 feet.

6.3 Horizontal Clearance

All horizontal clearances shall include the deflection of the structure and the displacement of the conductor added to the clearance requirements defined below. Clearances per Section 6.3.1 and Section 6.3.2 shall be based on the development of the clearance envelopes shown in the NESC for each situation plus 4.5 feet at a minimum. Basic NESC clearances, including horizontal clearances, are summarized in Attachment 2.

6.3.1 Adjacent Supply Lines

Horizontal clearances to adjacent supply lines shall be calculated using loads described in Section **Error! Reference source not found.** This clearance is based on an envelope as shown in NESC Figures 233-1, 2&3 and using the following loadings:

The horizontal movement shall be calculated using the medium wind defined under Rule 233A1a(1&2) using (1) a 6 lb/sf wind at 60°F (15°C) and no ice or (2) no wind at 60°F (15°C).

The maximum sag, Rule 233A1a(3), shall be calculated (a) using 120° F (49°C) with no wind; (b) using the max temperature; or (c) the Code Ice thickness with a temperature of 32°F (0°C) and no wind.

PLS-CADD shall be used to define the envelope vertices and check clearance to adjacent supply lines.

6.3.2 Adjacent Buildings and other Structures

The required clearance between conductors and buildings or other structures is covered in Rule 234 and varies between the various structure types. The loadings used for the clearance envelopes are given in Section **Error! Reference source not found.**. The Designer shall use PLS-CADD to check these clearances after specifying the required load cases and clearances.

6.3.3 Insulator/Conductor Swing Clearance

Clearances to the supporting structure resulting from insulator swing are addressed in Section 8.1. Additionally, air gap clearances between adjacent circuits on different structures are to be checked under the high wind load case in Section **Error! Reference source not found.**. Minimum clearance shall be that associated for the higher voltage for the 100 mph swing clearance given in Table 8.1.2.

6.3.4 Right of Way Requirements

6.3.4.1 Rights of Way for New Lines

Rights of way (ROW) for new transmission lines must provide spacing sufficient to assure reliability and equipment accessibility for maintenance and construction.

Required ROW widths for new lines must be determined considering four primary parameters: (a) the effective structure width(s), taken as the outboard conductor spacing for the structure; (b) the minimum required spacing between adjacent circuits on separate structures; (c) the conductor displacement due to wind; and (d) a vegetation management width at the edges of the ROW to allow for a cyclical growth and

periodic trimming schedules. The sum of the structure widths, any additional circuit spacing dimensions, and the conductor displacements (including the effects of structure deflection, insulator swing, and conductor movement) is called the conductor movement envelope (W_{CME}). Adding the appropriate vegetation management width on each side of W_{CME} gives the minimum allowed ROW width for purchase. Note that total minimum allowed ROW widths for purchase will be rounded upward in whole 5' increments (e.g., 161' is rounded to 165'.) The four parameters described above are illustrated for typical ROW situations in Figure 6.3.4.1-1 and Figure 6.3.4.1-2. Additional figures are found in Attachment 4.

Figure 6.3.4.1-1 – Typical Single Structure ROW

Notes: $w_s = Effective Structure Width$ (Outboard Conductor Spacing) $W_{VM} = Vegetation$ Management Width; $W_{CME} = Width$, Conductor Movement Envelope; Add Width = c/c Spacing

Figure 6.3.4.1-2 – Typical Double Structure ROW

Notes: $w_s = Effective Structure Width$ (Outboard Conductor Spacing) $W_{VM} = Vegetation Management Width; W_{CME} = Width, Conductor Movement Envelope W_{c-c} = Center to Center Structure Spacing$

6.3.4.2 Effective Structure Width (ws) or Outboard Conductor Spacing

Except where special circumstances warrant use of larger values, the minimum allowed ROW widths for new construction shall be based on the effective structure widths (ws) for standard structure framings as set forth in Table 6.3.4.2-1.

		Single Pole			
Voltage	H-frames (ft.)	Delta/ Vert. Double Circuit (ft.)	Single Circuit Vertical (ft.)		
500kV	67.66	28.00	0.00		
345kV	51.00	24.00	0.00		
230kV	40.00	18.00	0.00		
161/138/115 kV	32.00	14.33	0.00		
69kV	24.00	12.00	0.00		

Table 6.3.4.2-1 – Typical Effective Structure Widths

Note that for vertical conductor configurations, the conductors fall on the centerline of the circuit/ROW and the monopole structure itself is offset by a function of the insulator length. In such configurations there are no outboard conductors, and the effective width of the structure is treated as zero.

When determining ROW requirements for constructing a new transmission line adjacent to an existing transmission line (discussed in more detail below), the actual effective widths of the existing structure shall be determined and used in the calculation.

Adjacent Circuit Separation (Wc-c)

Circuit center to center horizontal spacing for ROW determinations shall be as shown in Table 6.3.4.2-2 unless the Performance Standard requires use of a higher value.

Table 6.3.4.2-2 – Minimum Spacing for Adjacent Circuits (W_{c-c})

		Single Pole			
Voltage	H-frames (ft.)	Delta/ Vert. Double Circuit (ft.)	Single Circuit Vertical (ft.)		
500kV	140	96	70		

		Single	e Pole
Voltage	H-frames (ft.)	Delta/ Vert. Double Circuit (ft.)	Single Circuit Vertical (ft.)
345kV	120	65	45
230kV	75	50	35
161/138/115 kV	60	40	30
69kV	45	30	20

For 345 kV and 500 kV Transmission Lines, the distances specified for adjacent single pole circuits reflect geometrical limits only. Electrical effects (audible noise, EMF, etc.) must be studied, and will require additional separation if indicated by the study. For two adjacent circuits of different voltage or framing, the larger of the two required separation distances shall be used.

6.3.4.3 Displaced Conductor Position (WCD)

During detailed line design, the displaced conductor positions are calculated including the effects of structure deflection and insulator/hardware swing; and using the load cases contained in Section 5. Wind loads are applied transversely in each direction to displace the conductor away from the centerline as illustrated below.

Notes: $w_s = Effective Structure Width$ (Outboard Conductor Spacing) $W_{CME} = Width$, Conductor Movement Envelope; $W_{CD} = Displaced$ Conductor Position Including Structure Deflection

In addition to checking required horizontal clearances per Sections 6.3.1 and 6.3.2, the displaced conductor position shall stay within the available conductor movement envelope under the extreme wind cases

described in Table 5.1.2. As part of the line design, pole placements and span lengths must be adjusted if required to maintain required clearances and keep the conductor within the available width.

The available CME widths in Table 6.3.4.4-1 and Table 6.3.4.5-1 contemplate and accommodate standard framings, typical spans, the current list of typical conductors and their specified stringing limits, etc. Markedly atypical designs may require a more rigorous evaluation of the ROW requirements. Conversely, severe ROW restrictions will likely require atypical design such as shortened spans.

Note that all tabulated values consider the use of V-string assemblies, braced-post assemblies, suspension units with struts, or other configurations where insulator swing is confined.

6.3.4.4 Vegetation Management Width (WVM)

It is assumed that trees grow or someday will grow at the edge of the ROW, and that normal growth cycles will result in further encroachment into the Vegetation Management Width. Therefore, the conductor movement envelope (CME) alone is insufficient as a ROW. Vegetation management in the area adjacent to ROW edges is required to prevent grow-in and to comply with the Minimum Vegetation Clearance Distance (MVCD see also definitions). Thus, additional width between the ROW edge and the outboard conductors is essential to allow planned, efficient vegetation management without violating the MVCD.

To accomplish this, apply a Minimum Vegetation Action Threshold Distance (MVATD) for prioritizing corrective maintenance. The Vegetation Management Width (W_{VM}) to be used when determining ROW width shall bound the MVATD and MVCD, and is tabulated below (values for MVATD and MVCD are provided for reference):

	WVM	MVATD	MVCD
Voltage	(ft.)	(ft.)	(ft.)
500kV	22.5	14.68	7.4
345kV	15.0	9.44	4.5
230kV	12.5	5.14	4.3
161/138/115 kV	10	3.42 / 2.94 / 2.45	2.9 / 2.4 / 2.0
69kV	7.5	2.45	1.2

Table 6.3.4.4-1 – Vegetation Management Widths

Where a circuit is to be built at a given voltage but operated at a lower voltage, the W_{VM} for the higher voltage shall be used to determine ROW width.

6.3.4.5 Calculation of Minimum Allowed ROW Width for Purchase - New Single Circuit Line or Double Circuit on the Same Structures

As illustrated in the preceding figures, at any given point, the minimum allowed ROW shall equal the applicable CME plus the applicable vegetation management width (W_{VM}) on each side of the ROW. Assuming multiple circuits are the same voltage, standard ROW widths are determined as:

ROW = WCME + 2(WVM), rounded up to the next whole 5' increment

and are tabulated by voltage and framing type in Table 6.3.4.5-1 and Table 6.3.4.5-2.

		Typical R	OW Width (ft.) fo	r Purchase	Conductor Movement Envelope - CME (ft.)			
Line Voltage (kV)	WVM (ft.)	H-Frame	Single Pole Delta/Vertical Double Circuit	Single Pole Vertical	H-Frame	Single Pole Delta/Vertical Double Circuit	Single Pole Vertical	
500	22.50	225	125	125	180	80	80	
345	15.00	190	155	135	160	125	105	
230	12.50	150	125	110	125	100	85	
161	10.00	120	100	90	100	80	70	
69	7.50	90	75	65	75	60	50	

Table 6.3.4.5-1 – Minimum Required ROW Widths for Single Structures (Single Circuit or Multi-Circuit on Same Structure)

Table 6.3.4.5-2 – Minimum Allowed ROW Widths for Multiple Structures and Circuits

		ROW Widths (ft.) assuming two identical lines									
	ROW	Width for Purcha	Conductor Movement Envelope			Add. Width per line (ft.)					
Line Voltage (kV)				- CME (ft.)							
	H- Frame	Single Pole Delta/Vertical Double Circuit	Single Pole Vertical	H- Frame	Single Pole Delta/Vertical Double Circuit	Single Pole Vertical	H- Frame	Single Pole Delta/Vertical Double Circuit	Single Pole Vertical		

500	365	225	195	320	180	150	140	96	70
345	310	220	180	280	190	150	120	65	45
230	225	175	145	200	150	120	75	50	35
161	180	140	120	160	120	100	60	40	30
69	135	105	85	120	90	70	45	30	20

Notes regarding Tables 6.3.4.5-1 and 6.3.4.5-2:

1. Tabulated 500 kV single pole ROW reflect an atypical short span design intended to compact lines on narrower ROWs.

2. As noted in 6.3.4.1, tabulated values reflect Vee-String, Brace Post, Suspension/Strut or other insulator assemblies where conductor attachments are somewhat restrained. Where suspension I-String assemblies are used: at 230 kV and below the ROW widths given shall be increased by 5 feet; and at 345 kV they shall be increased by 10 feet. Only Vee-String assemblies are currently approved for 500 kV.

3. The ROW values presented are indicative of what would be required in straight sections of ROW containing tangent or light angle structures. Large angle changes using multi-pole structures or extensive guying patterns will require additional ROW in the vicinity of the angle structure.

7 CONDUCTOR AND SHIELD WIRE INFORMATION

This section includes design information about standard conductors, both in single and in bundled configurations, along with standard shield wires, including fiber optic wires. It includes tension and vibration control data for the NESC and Entergy design conditions. Conductors and shield wires shall be selected from these standards unless Buyer and Seller otherwise agree in a writing signed by authorized representatives of the Parties.

7.1 Entergy Standard Conductors

The required technical standards for conductors are set forth in this Section 7.1_(properties based on Southwire® data unless noted.):

Туре	<u>Size</u>	Stranding	Code Word	Area (in²)	Area (in²) <mark>Dia. (in.)</mark>		Strength
						<u>(lb/ft)</u>	<u>(lbs)</u>
WT/:	1949	56/1	LAPWING ⁽⁴⁾	1.647	1.504	1.938	48,900
ACCC	1582	33/1	BITTERN ⁽⁴⁾	1.336	1.345	1.566	39,400

Table 7.1A – Standard Conductors – Mechanical Properties

Туре	<u>Size</u>	Stranding	Code Word	Area (ir	²)Dia. (in.)	Weight	<u>Strength</u>
						<u>(lb/ft)</u>	<u>(lbs)</u>
	1428.5	33/1	BEAUMONT ⁽⁴⁾	1.232	1.294	1.436	43,700
	1222	33/1	CARDINAL ⁽⁴⁾	1.053	1.198	1.224	37,100
	821.2	18-1	GROSBEAK ⁽⁴⁾	0.725	0.990	0.836	30,400
	1590	45/7	LAPWING	1.34	1.50	1.79	27,900
	1272	45/7	BITTERN	1.07	1.35	1.43	22,300
	954	54/7	CARDINAL	0.85	1.20	1.23	26,000
ACSS	666.6	24/7	FLAMINGO	0.59	1.00	0.86	18,200
4	1780	84/19	CHUKAR	1.51	1.60	2.08	51,000
	1590	45/7	LAPWING	1.34	1.50	1.79	42,200
	1272	45/7	BITTERN	1.07	1.35	1.43	34,100
	1033.5	45/7	ORTOLAN ⁽¹⁾	0.87	1.21	1.163	27,700
	954	54/7	CARDINAL	0.85	1.20	1.23	33,800
	954	45/7	RAIL ⁽²⁾	0.80	1.165	1.075	25,290
	666.6	24/7	FLAMINGO	0.59	1.00	0.86	23,700
ACSR	336.4	26/7	LINNET	0.31	0.72	0.46	14,100
	1024.5	34/13	N/A ⁽³⁾	0.80	1.165	0.96	23,100
	649.5	18/19	N/A	0.51	0.93	0.61	17,100
ACAR	395.2	15/7	N/A	0.31	0.72	0.37	10,100

(1) Not for New Construction, Capital Maintenance only

(2) 345 kV and 500 kV only – Use for new construction

(3) 500 kV only – for Capital Maintenance work only

(4) Source: General Cable/LAMIFIL Data

(5) It is generally preferential to develop a custom conductor solution using an ACCR conductor in lieu of the ACCC conductors. Use of the ACCC standards will generally be limited to extension of existing ACCC lines or other similar circumstances.

Ampacity ratings for the standard conductors are determined using the commercially available software SWRate, which is based on the methodology of IEEE 738. Ampacity was determined using design parameters specified in Entergy standards and the conductor properties contained in the SWRate program library. Line ratings are also expressed as conductance in MVA using the expression MVA = V * A * 0.001 * 3^0.5, where V is voltage in kV, and A is rated ampacity in amps. Ampacity and conductance ratings for the standard conductors are summarized below.

Туре	Size / Code	Rated	MVA	MVA	MVA	MVA 161	MVA	MVA	MVA
	<u>Word</u>	<u>Amps (1)</u>	<u>69kV</u>	<u>115kV</u>	<u>138kV</u>		<u>230kV</u>	<u>345kV</u>	<u>500kV</u>
						<u>kV</u>			
	1949 /	2490	298	496	595	694	992	_	
		2430	230	430	030	034	332		
	1582 /	2180	261	434	521	608	868	-	-
	BITTERN								
	4.400.4	0050	0.45	400	100		0.17		
		2050	245	408	490	572	817	-	-
	BEAUMONT								
	1222 /	1857	222	370	444	518	740	-	-
3)	CARDINAL								
Ň									
C7	821.4 /	1439	172	287	344	401	573	-	-
Ö	GROSBEAK								
∢	1590 /	2263	270	451	541	631	902	-	-
	LAPWING	2200	2.0	101	011	001	002		
	1272 /	1957	234	390	468	546	780	-	-
	BITTERN								
	954 /	1607	102	320	384	118	640		L
		1007	192	520	504	440	040		
	666.6 /	1312	157	261	314	366	523	-	-
SSC	FLAMINGO								
AC	1790 /	1609	100	220	294	440	644		
К		1008	192	320	384	448	641	-	F
ACS									
4		1			I				I

Table 7.1B – Standard Conductors – Capacity

Туре	Size / Code	Rated	MVA	MVA	MVA	MVA 161	MVA	MVA	MVA
	<u>Word</u>	<u>Amps (1)</u>	<u>69kV</u>	<u>115kV</u>	<u>138kV</u>		<u>230kV</u>	<u>345kV</u>	<u>500kV</u>
						<u>kV</u>			
	1500 /	1404	170	200	057	447	505		
		1494	179	298	357	417	595	-	-
	LAPWING								
	1272 /	1303	156	260	311	363	519	-	-
	BITTERN								
	1033.5/	1144	137	228	273	319	456	-	-
	ORTOLAN ⁽²⁾								
	954 /	1088	130	217	260	303	433	-	-
	CARDINAL								
	954 / RAIL	1088	130	217	260	303	433	650	942
	666.6 /	882	105	176	211	246	351		
		002	105	170	211	240	551		_
	336.4 LINNET	575	69	115	137	160	229	-	-
	ACAR 1024.5	878	105	175	210	245	350	-	760
	(2)								
	ACAR 649.5	658	79	131	157	183	626	-	-
		183	58	96	115	135	102		
	AUAN 390.2	403	50	90	115	155	192		Ē
ЧR									
AC,									

(1) At normal operating temperatures, $212^{\circ}F$ (100°C) for ACSR, $347^{\circ}F$ (175°C) for ACSS and ACCC, and 176°F (80°C) for ACAR.

(2) Other historical limits may govern.

(3) It is generally preferential to develop a custom conductor solution using an ACCR conductor in lieu of the ACCC conductors. Use of the ACCC standards will generally be limited to extension of existing ACCC lines or other similar circumstances.

7.2 Standard Shield Wires

The required technical standards for shield wires are set forth in Table 7.2 below:

Table 7.2 – Standard Shield Wires

Code Word	<u>Class Type</u>	<u>Size</u>	Strand-Ing	<u>Area</u>	<u>Dia.</u>	<u>Weight</u>	Strength
				<u>(in^2)</u>	<u>(in.)</u>	<u>(lb/ft)</u>	<u>(lbs)</u>
7 #7	Alumoweld	0.0	7	0.11	0.43	0.33	19,060

7.3 Standard Optical Ground Wires

The required technical standards for optical ground wires (OPGW) are set forth below:

|--|

Code Word	Class Type	Fibers	Strand-In	<u>g Area</u>	<u>Dia.</u>	<u>Weight</u>	<u>Strength</u>
				<u>(in^2)</u>	<u>(in.)</u>	<u>(lb/ft)</u>	<u>(lbs)</u>
DNO-5651	AlumaCore	24LT	13	0.151	0.528	0.36	18,391
DNO-6651	AlumaCore	48LT	9/6	0.221	0.646	0.42	18,053
DNO-3476	AlumaCore	24	13	0.151	0.528	0.36	18,433
DNO-4596	AlumaCore	48	9/6	0.221	0.646	0.42	18,053
DNO-6205	CentraCore	24	10	0.166	0.528	0.41	21,845
DNO-6210	CentraCore	48	10	0.166	0.528	0.41	21,845
DNO-8161 ⁽¹⁾	AlumaCore	48	13	0.151	0.528	0.36	18,391
DNO-9800 ⁽²⁾	AlumaCore	48	13	0.151	0.528	0.36	19,391

(1) DNO-8161, 48 fiber AlumaCore will be the default OPGW selection unless project specifics warrant a different selection.

(2) DNO-9800, 48 fiber AlumaCore will be the default OPGW selection for "backbone" applications where dispersion shifted fibers are required by the telecommunications department.

Alternative optical ground wires may be used, provided they meet the same specifications as the abovereferenced wires. Similar hardware to that used for standard wires specified herein must be used so that nonstandard hardware does not have to be stocked for maintenance.

7.4 Bundled Conductors

7.4.1 Bundled Conductors (New Construction, excluding 500 kV)

The standard bundled configuration is a vertical bundle in which no spacers are required. If other configurations are used, the conductor supplier and/or manufacture of the spacers shall be consulted regarding spacers requirements.

The standard assembly for bundled dead-end structures shall be the "DEPY" dead-end assembly with a two-insulator attachment to the structure.

Bundled dead-end structures where the maximum tension (with OCF) in each sub-conductor is less than 9700 lbs. may use the "DEP- 2 wire" dead-end assemblies with a single insulator. This assembly shall mainly be used in reduced tension situations.

All bundled structures with angles less than 30 degrees shall be designed as running angle structures, including Structure Types "C", "F" and "G". Those with angles greater than 30 degrees shall be designed as dead-end structures.

7.4.2 Bundled Conductors (500 kV)

The standard 500 kV bundled conductor is a triple delta configuration with spacers at approximately 250 foot intervals.

7.5 Sag and Tension Limitations

7.5.1 NESC Tension Limits

Following are the maximum tension limits allowed in the determination of project sag and tension values. The "Zone Loading" tension limit is an NESC requirement for all load cases with an overload capacity factor of 1.65. The tension limits for extreme wind and heavy ice are Entergy requirements and have an overload capacity factor of 1.0. Load cases are shown in <u>Section 5.4.</u> The limit is a percent of the Ultimate Breaking Strength (UBS) of the wire. Limits are based on the Initial tension of the wire.

	Load	Tension Limits
•	Zone loading (OCF=1.65)	60% UBS - @ Initial Ten. (NESC 261H1)
•	Extreme Wind (OCF=1.0)	75% UBS - @ Initial Ten.

• Concurrent Ice & Wind (OCF=1.0) 5% UBS - @ Initial Ten.

Additionally, the NESC (Section 261 H1) requires that the tension at each of the applicable NESC Zone temperatures shown in Table 5.1.2, without external load, shall not exceed the following percent of their UBS:

Initial unloaded tension 35% UBS

Final unloaded tension 25% UBS

These tension limits apply at each of the applicable NESC Zone temperatures shown in Table 5.1.2, unless dampers are used, in which case this limitation is at a maximum of 60°F (15°C).

7.5.2 Tension Limits for Vibration Control

Except for ACCC and ACCR conductors, for vibration control, maximum catenaries (horizontal tension/weight), or "C" values, will be calculated at 0°F (-20°C), 0 mph wind, and 0 inches ice. Calculated values for "C final" shall be 4710 and for "C initial" shall be 6000. Lesser values of "C" will require approval by Buyer.

For ACCC conductors, vibration dampers shall be placed in accordance with the manufacturer's recommendations.

The following table," Vibration Control Values", provides Entergy's tension limits for the standard conductors. The table was developed considering 900 ft. ruling spans. However, these values may be used for other ruling spans with only slight variations. Other ruling spans will require approval by Buyer.

Туре	Conductor Name	Load Case	<u> Max Tension</u>	% of Ultimate Strength
			(pounds)	
	LAPWING	0-0-0 (I)	10740	38.5
	LAPWING	0-0-0 (F)	8431	30.2
	BITTERN	0-0-0 (I)	8580	38.5
	BITTERN	0-0-0 (F)	6735	30.2
	CARDINAL	0-0-0 (I)	7380	28.4
	CARDINAL	0-0-0 (F)	5793	22.3
	FLAMINGO	0-0-0 (I)	5160	28.4
ACSS	FLAMINGO	0-0-0 (F)	4051	22.3
	CHUKAR	0-0-0 (I)	12480	24.5
	CHUKAR	0-0-0 (F)	9796	19.2
	LAPWING	0-0-0 (I)	10740	25.5
	LAPWING	0-0-0 (F)	8431	20.0
	BITTERN	0-0-0 (I)	8580	25.2
	BITTERN	0-0-0 (F)	6735	19.8
ACSR	ORTOLAN	0-0-0 (I)	6978	25.2

Table 7.5.2 – Vibration Control Values

Туре	Conductor Name	Load Case	Max Tension	% of Ultimate Strength
			(pounds)	
	ORTOLAN	0-0-0 (F)	5478	19.8
	CARDINAL	0-0-0 (1)	7380	21.8
	CARDINAL	0-0-0 (F)	5793	17.1
	RAIL	0-0-0 (I)	6450	24.9
	RAIL	0-0-0 (F)	5063	19.5
	FLAMINGO	0-0-0 (I)	5160	21.8
	FLAMINGO	0-0-0 (F)	4051	17.1
	LINNET	0-0-0 (I)	2760	19.6
	LINNET	0-0-0 (F)	2167	15.4
	649.5 ACAR	0-0-0 (I)	3660	21.4
	649.5 ACAR	0-0-0 (F)	2873	16.8
	395.2 ACAR	0-0-0 (I)	2220	22.0
	395.2 ACAR	0-0-0 (F)	1743	17.3
	1024.5 ACAR	0-0-0 (I)	5760	24.9
ACAR	1024.5 ACAR	0-0-0 (F)	4522	19.6
	7#7 AW	0-0-0 (I)	1980	10.4
	7#7 AW	0-0-0 (F)	1554	8.2
MS	7/16" Steel	0-0-0 (I)	2400	11.5
	7/16" Steel	0-0-0 (F)	1884	9.1
	* AlumaCore, DNO-8161	0-0-0 (I)	2160	11.7
>	* AlumaCore, DNO-8161	0-0-0 (F)	1696	9.2
OPGM	* AlumaCore, DNO-9800	0-0-0 (I)	2160	11.1

<u>Type</u>	Conductor Name	Load Case	<u>Max Tension</u> (pounds)	% of Ultimate Strength
	* AlumaCore, DNO-9800	0-0-0 (F)	1696	8.7
	ADSS-AE024HG611CA2	0-0-0 (I)	546	18.2
ADSS	ADSS-AE024HG611CA2	0-0-0 (F)	429	14.3

*AlumaCore, DNO-8161 is the default.

Note ADSS is not a transmission standard transmission conductor but is frequently used as an underbuilt non-transmission conductor. Typical ADSS span is on the order of 200 feet.

Also note that (F) load cases shall be controlled by both Creep RS and Load RS, and that bimetallic conductors shall consider the effects of compression at high temperatures

7.5.3 Vibration Control for Long Spans Exceeding the Ruling Span

For span lengths greater than the ruling span, the Designer shall take special care to compare the conductor and shield wire sags, to ensure that adequate clearances at mid-span are maintained under all conditions. The shield wire tension shall not exceed 16% of its ultimate strength at 60°F (15°C), final. To account for unusual circumstances (e.g., ravine crossings), it may be necessary to dead-end the shield wire to account for tension differentials and/or increase the tensions along with adding dampers per manufacturer's specifications.

7.6 Correction to Sag when Final Installation is Interrupted

Prolonged stringing durations can affect final sags due to creep beyond that considered in the sagging algorithm. Conductors and shield wires shall be clipped in within 72 hours of achieving the intended stringing tension. Where stringing operations are interrupted or extend beyond this 72-hour threshold, engineering evaluation/approval is required with final approval by Buyer, and the cable manufacturer shall be contacted to obtain technical instructions on the issue.

7.7 Galloping

Certain areas within the Entergy Service Area have been identified as areas prone to galloping and shall require the installation of vibration control devices. These areas are generally in north Arkansas along the Mississippi River in open, flat areas where it is possible for ice to form on the cables.

Phase spacing shall be set to avoid mid-span interference between phases through the required assumption that double ellipse galloping will occur on any span exceeding 400 feet. A galloping overlap of less than 10 percent between phases will be allowed in the design process. It is generally assumed that using span lengths between 400 and 900 feet would eliminate this overlap. The ruling span is set at 80% of the limiting span for this analysis.

7.8 Aeolian Vibration

Aeolian vibration fatigue damage typically occurs in flat, open areas. The most effective way to reduce this type of vibration is to reduce the line tension. Also, the installation of dampers may eliminate or reduce this vibration; however, the conductor and damper suppliers shall be consulted regarding these conditions.

The use of ACSS type conductors may also reduce this vibration after one year of operation because of the self-damping characteristics built into this type of conductor.

7.9 Conductor Corona

Two solutions to reduce conductor corona are larger conductors and/or bundled conductors.

For 161 kV, 115 kV, and 69 kV, 336 kcmil ACSR "Linnet" shall be the minimum conductor size.

At 230 kV, bundled 395 kcmil ACAR conductors or, for single conductor lines, a recommended standard wire size of 954 kcmil ACSR. The minimum wire size for 230 kV using industry standards is approximately one inch in diameter. The smallest standard wire size that meets the industry standard minimum wire size is "Flamingo" 666.6 kcmil ACSR.

For 500 kV transmission lines, 1024 kcmil ACAR and 954 kcmil ACSR "Rail" shall be the minimum conductor sizes to avoid corona effects. The standard for new construction is 954 kcmil "Rail".

The selection of conductor size, considering corona losses, shall be estimated using the attached figure (obtained from the Westinghouse Transmission and Distribution Manual) entitled "Fig. 31 - Quick Estimating Corona-Loss Curves". This figure is attached as Attachment 3.

7.10 ACSS and ACSS/TW Conductor

7.10.1 ACSS Sags – Tensions - Stringing

ACSS suppliers have recommended that the ACSS & ACSS/TW conductors be pre-tensioned for approximately 10 to 15 minutes before final sagging of the line. This procedure inelastically stretches and elongates the aluminum wires and the steel core provides total support of the conductor in normal operation. Since little or no stress is left in the aluminum wires, initial and final sags and tensions are nearly the same. Pre-stressing is a means of reducing creep and enhancing self-damping capability. Recommendations for pre-stressing vary and range from the maximum tension. Consult with cable manufacturer for prestressing methodology and specifications.

7.11 Fiber Optic/Shield Wire Requirements

Fiber Optic Shield Wire (OPGW) is often the preferred shield wire. For structures with two shield wires, one shield wire will typically be OPGW and one shield wire will typically be 7#7. Project specific shield wire requirements is subject to approval by Buyer. Substation Relay Design, SCADA, Substation Networking and Corporate Telecommunications will need to determine the number of fibers that they will need. Standard Entergy shield wires are found in Section 7.

7.11.1 Fiber Optic Details

The fiber optic line may be dead-ended if the line angle is over 30°. For line angles between 30° and 50°, a heavy angle suspension assembly may be utilized. Fiber optic construction details are shown on the standard assembly drawings, shown in Attachment 1.

7.11.2 Splice Box Locations

Splice boxes shall be placed at existing or expected future laterals and substations. Additional boxes will be needed at intervals along the line, generally corresponding to reel wire length, line angles, and considering the nearest points of access.

7.12 SW Sagging Relative to Conductors

Every effort shall be made to ensure that the shield wire(s) have less sag than the conductor, so that any flashovers are encouraged to occur at a structure rather than at mid-span. It is suggested that the shield wire have a lesser amount of sag by approximately 0.33 percent of the span length, or approximately two (2) feet, under normal stringing loads, i.e., 60°F (15°C). Where this is not feasible, the tension limits to control vibration in Table 7.5.2 may be relaxed to pull the shield wire more tightly and achieve greater separation. Where the tension limits of Table 7.5.2 are relaxed, a conductor vibration study shall be performed, and vibration dampers shall be installed on the shield wire per the recommendations of the vibration study. Alternately, the standard framing may be modified with approval from Buyer to provide greater separation between the shield wire and the conductor.

7.13 Conductor and Shield Wire Marking

7.13.1 Aerial Patrol Marking

Aerial patrol marking to provide early warning of the hazards due to crossing transmission lines shall be applied as described herein.

7.13.2 Marking for Federal Aviation Administration (FAA) regulations

Marking required to comply with Federal Aviation Administration (FAA) regulations shall not be confused with the aerial patrol marking described in paragraph 7.13.1. When routing new lines, it is generally better to avoid selecting routes that pass within close proximity of airports, landing strips, heliports and facilities such as hospitals that might have aircraft landing on improvised landing sites. Such facilities can be generally identified by examining aerial navigation maps available at pilot centers in most public airports, examination of quadrangle maps published by the U.S. Geological Commission, examination of aerial photographs acquired for the line project, and other sources. Where these facilities cannot be avoided and where it is determined that FAA rules apply, the requirements of FAA Advisory Circular AC 70/7460-1K shall apply.

7.13.3 Navigable Waterway Marking

Lines crossing navigable waterways shall be marked as delineated in the applicable permits.
7.13.4 Avian

Avian markers are to be installed where appropriate to make the line more visible to birds. Several forms of markers are commercially available and marketed to increase line visibility and reduce the possibility of avian mortality. Avian markers shall be required only where specified by wildlife agencies or by applicable permits.

7.13.5 Slow-Moving Vehicle Signs

Slow-moving vehicle signs shall be placed on the third and fourth adjacent structures on both sides of any crossover lines, with the signs facing the approach to the lines from either side of the crossover. It is very important that all crossings be marked on the same number of advance structures for safety reasons. One sign on each structure shall be used to indicate a single crossover ahead. If two crossovers in close proximity exist ahead, then two signs shall be installed on each structure, one sign over the other, if possible. Two-crossover situations shall also have single signs on both sides of structures between the crossovers. Details of the installation are covered in an attachment to this Appendix 2, but generally the signs shall be near the top of the poles or towers of the structures. When used on wooden poles, the signs shall be outside any woodpecker wire covering the pole.

7.13.6 Spiral Vibration Dampers (Yellow)

Spiral dampers in addition to slow-moving vehicle signs may be desirable in some cases with extraordinary visibility difficulty. When used, such dampers shall be installed with a minimum of one pair of dampers on both sides of centerline of the line being patrolled at a point just outside the conductor locations but not less than 15 feet between the pairs. If there are two shield wires on the crossover line, half of the dampers shall be installed on each shield wire.

7.13.7 QuikMark Devices

QuikMark devices, in addition to slow-moving vehicle signs, may be desirable in some cases with extraordinary visibility difficulty. When used, QuikMark devices shall be installed with a minimum of three QuikMark devices on each side of centerline of the line being patrolled at a point just outside the conductor locations but not less than 15 feet between each trio. If there are two shield wires on the crossover line, install half of the QuikMarks on each shield wire.

7.13.8 QuikMark Devices Combined with Spiral Vibration Dampers

QuikMark devices and spiral dampers may be combined to mark shield wires by keeping equal numbers of each on each side of the line being patrolled so the visual effects are balanced on the line. When the Transmission Line crosses under the line of another, the minimum requirement is for QuikMark devices or spiral dampers or both to be installed on the shield wires of the other line. This is for the safety of Entergy aerial patrollers and to protect Entergy and others from claims by the owner of the other line for property damage, lost revenues on the other line, and other claims.

8 OTHER ELECTRICAL CRITERIA

8.1 Electrical Insulation

All insulators shall be polymer (non-ceramic). Insulators that are procured from one of Entergy's approved vendors for insulators and adhere to Entergy's standards are assumed to meet this specification. Insulator types include dead-end, braced post, post, suspension and jumpers. All new HV (69 kV and above) Transmission Lines shall have insulators with corona rings installed. Details for these insulators are included in Attachment<u>1</u>.

8.1.1 Insulator Swing

8.1.1.1 Mechanical Clearance

Post and braced post assemblies have the potential for contact between their suspension shoe and their post insulator. The suspension shoe may swing towards the supporting post insulator without any wind due to line deflection angle and/or phase position changes between consecutive structures. With a 6 PSF wind (60 degrees Fahrenheit and final wire tension) further displacing the conductor hardware from its everyday displacement, contact with the sheds (or corona ring) is not allowed. With extreme wind specified in Table 5.1.2 of the design criteria (60 degrees Fahrenheit and final wire tension) further displacing the conductor hardware from its everyday displacement, contact with the rod's sheath is not allowed. A swing angle adapter shall be used to increase mechanical clearance. This adapter does not preclude mechanical conflict, so conductor position shall still be checked.

8.1.1.2 Electrical Clearance

Table 8.1.1.2 specifies required certain clearances from the energized conductor shoe to non-energized portions of the structure under the prescribed conditions specified in the footnotes. These clearances were built into Entergy's standard framings shown in Attachment 1. Certain atypical conditions, such as short spans, structures in dips, transition between framings or phasing, deflection angles near the top of the range, and higher tensions, can warrant deviations from standard, such conditions will require Seller to acquire approval from Buyer. Conductor position shall be verified against Table 8.1.1.2 that the required minimum clearances are met, especially for suspension insulators. For posts and braced posts, the standard post lengths will ensure that these clearances are met, except for the no-wind clearance for bundled conductors. For bundled posts and bundled braced posts, the conductor hardware shall not be allowed to swing more than 30 degrees toward the pole without wind (0 degrees F, initial). Note that the swing angle adapters mentioned in Section 8.1.1 do not improve electrical clearance.

FRAMING VOLTAGE	CONDITION	CLEARANCE TO ARM OR STRUCTURE	CLEARANCE TO GUY	
500 kV	6 psf wind ⁽¹⁾	123 in	11 ft.	
500 kV	100 mph ⁽²⁾	60 in	5 ft.	
500 kV	no wind ⁽³⁾	140 in	12 ft.	
500 kV	no wind ⁽⁴⁾	140 in	12 ft.	

Table 8.1.1.2 – Minimum Insulator Swing Clearances

FRAMING VOLTAGE	CONDITION	CLEARANCE TO ARM OR STRUCTURE	CLEARANCE TO GUY
345 kV	6 psf wind ⁽¹⁾	85 in	8 ft.
345 kV	100 mph ⁽²⁾	41 in	4 ft.
345 kV	no wind ⁽³⁾	105 in	9 ft.
345 kV	no wind ⁽⁴⁾	105 in	9 ft.
230 kV	6 psf wind ⁽¹⁾	52 in	6 ft.
230 kV	100 mph ⁽²⁾	27 in	3 ft.
230 kV	no wind ⁽³⁾	83 in	8 ft.
230 kV	no wind ⁽⁴⁾	88 in	8 ft.
161 kV	6 psf wind (1)	37 in	5 ft.
161 kV	100 mph ⁽²⁾	19 in	2 ft.
161 kV	no wind ⁽³⁾	60 in	7 ft.
161 kV	no wind ⁽⁴⁾	71 in	7 ft.
138 kV	6 psf wind ⁽¹⁾	34 in	5 ft.
138 kV	100 mph ⁽²⁾	16 in	2 ft.
138 kV	no wind ⁽³⁾	54 in	7 ft.
138 kV	no wind ⁽⁴⁾	65 in	7 ft.
115 kV	6 psf wind (1)	28 in	5 ft.
115 kV	100 mph ⁽²⁾	13 in	2 ft.
115 kV	no wind ⁽³⁾	49 in	7 ft.
115 kV	no wind ⁽⁴⁾	60 in	7 ft.
69 kV	6 psf wind ⁽¹⁾	17 in	3 ft.
69 kV	100 mph ⁽²⁾	8 in	1 ft.
69 kV	no wind ⁽³⁾	49 in (36 in) ⁽⁵⁾	6 ft.
69 kV	no wind ⁽⁴⁾	60 in (49 in) ⁽⁵⁾	6 ft.

(1) Max required value between switch surge and NESC air gap. Controlled by NESC with 10% Voltage Surge (1.1 x nom. Voltage).

(2) 60 Hz minimum flash over distance.

(3) No wind clearance for suspension insulator (Impulse Air Gap).

(4) No wind clearance for running angles (Impulse Air Gap).

(5) 69 kV framings use 115 kV no-wind air gaps for improved lightning performance. On existing structures where there isn't room for longer insulators and air gaps, the numbers in parentheses apply.

8.1.1.3 Typical Standard Davit Arms

For the purpose of determining clearances presented in Table 8.1.1.2 accounting for insulator swing; as well as for the purpose of evaluating shield angle and determining conductor coordinates, the following arm lengths and insulator lengths shall be used:

INSULATOR LENGTH ⁽²⁾				
VOLTAGE (kV)	ТҮРЕ	INSULATOR LENGTH (IN)	DESIGN LENGTH (IN.)	
69	SUS	59	66	
161	SUS	73	78	
230	SUS	89	96	
69	DE/RA	62	80	
161	DE/RA	92	98	
230	DE/RA	104	110	
69	LP/BP	60	60	
161	LP/BP	76	78	
230	LP/BP	94	94	
DAVIT ARM LENGTH ⁽¹⁾				
VOLTAGE (kV)	ТҮРЕ	LENGTH	RISE (IN.)	
69	Tangent	5'-6"	13	
161	Tangent	8'-6"	25	
230	Tangent	11'-0"	24	
69	Swing	3'-0"	N/A	
161	Swing	4'-0"	N/A	
230	Swing	5'-0"	N/A	
69	DE	5'-0"	12	
161	DE	6'-0"	15	
230	DE	8'-0"	20	

 Table 8.1.1.3 – Typical Davit Arm and Insulator Lengths for New Construction

- (1) Davit Arm Length is from pole face to conductor attachment
- (2) Design length includes hardware.

8.1.1.4 Insulator Attachments – 69 kV, 161 kV, and 230 kV Structures

Braced post and line post insulators are limited to a line angle of 6 degrees based on the limited compression capacities of these insulators. Insulator capacities shall be obtained from manufacturer.

8.1.1.5 General

The same insulator type can be used for concrete and steel poles. Insulator attachments for post insulators are required to be provided by thru-bolting standard insulators to the pole structures.

Dead-end and suspension insulators are required to be attached to the poles via vangs on steel poles or pole-eye plates on concrete poles.

8.1.1.6 Conductor and Shield Wire Vangs

Standard conductor and shield wire attachment vangs on all steel poles shall be 3/4" plate with 1 1/8" diameter holes and 1 1/2" radius and shall be the same on both ends.

Conductor attachment vangs on concrete poles will be 60,000 or 70,000 pound strength pole-eye plates mounted with 7/8" diameter all-thread rods, similar to those provided by Hughes Brothers in Lincoln, Nebraska.

8.1.1.7 Guy Vangs

Standard guying vangs on all steel poles shall be 3/4" plates with 1 1/8" diameter holes and 11/2" radius and shall be the same on both ends. All guy attachment vangs on all concrete poles will be 60,000 or 70,000 pound strength pole-eye plates mounted with 7/8" diameter all-thread rods, similar to those provided by Hughes Brothers in Lincoln, Nebraska.

8.1.1.8 Polymer Insulator Standard Drawing

Attachment 1 has detailed drawings of the Entergy Standard Insulator drawings for 115 kV, 138 kV, 161 kV and 230 kV voltages. Seller shall use the Entergy Standard Insulators and must verify they meet the requirements for the design. The drawing includes the following information:

Braced Post Insulators

Horizontal Line Post Insulators

Suspension Insulators

Dead-End Insulators

Minimum Flashover Characteristics

Minimum Leakage Distance

8.2 Transmission Line Lightning Protection Design

8.2.1 Reference Guides

IEEE Std. 1243-1997	Guide for Improving the Lightning Performance of Transmission Lines
EPRI	Handbook for Improving Overhead Transmission Line Lightning Performance

EPRI	AC Transmission Line Reference Book - 200kV and Above
EPRI	Guide for Transmission Line Grounding
EPRI	Outline of Guide for Application of Transmission Line Surge Arrestors – 42 to 765 kV

Where applicable Seller shall apply the following parameters during the design process.

8.2.2 GFD

The GFD varies greatly throughout Entergy's transmission system and average from 2-7 flashes/Km²/yr. However, the GFD for any area for a particular year can be more than 3X the historic average. Therefore, Entergy's design parameters do not consider the GFD for the specific line but assume the standard design methods will ensure an adequate reliability throughout the system no matter the GFD of any particular location.

8.2.3 Structure BIL

Although local atmospheric conditions can affect the ability of air to insulate against a flashover the typical breakdown rate for a negative dry arc is 650 kV per meter. Therefore, the structure BIL is 650 kV X air gap in meters.

It is very difficult to maintain an acceptable BIL for distribution circuits on a transmission line structure. In order to maintain acceptable lightning performance when attached to tall shielded transmission structures, fiberglass arms and transmission class insulators are required.

Distribution underbuild is considered a last resort for new construction. It complicates maintenance for both organizations.

8.2.4 Shield Wire Installation

The installation of a shield wire is the required method of lightning protection.

8.2.5 Shield Wire Type and Size

The size and type of shield wire used will be determined by needs other than that required for lightning protection, such as fault current. Any of Entergy's standard shield wires conforming to the parameters set out in the referenced guideline will be adequate for the lightning protection of the line. Note: Supporting distribution phases on transmission structures exposes transmission shield wire to long duration distribution faults for which it was not designed. Therefore, a neutral conductor shall be bonded to each transmission structure.

8.2.6 Shielding Angle

The shielding angle, as measured at the structure from the vertical plane of the shield wire clamp to the conductor clamp, shall be no more than 25° for structures adjacent to spans averaging less than 150 feet above ground level. The required shielding angle on structures where the average conductor height is greater than 150 feet above ground level need to be designed on a case by case basis and shall be subject to approval from Buyer. The average height taken as the height at the structure minus 2/3 the sag.

On single pole structures with one shield wire, the shielding angle shall be checked to the top conductor as well as to the bottom conductor opposite the shield wire attachment.

On H-type structures, the shielding angle shall be checked for each shield wire to its corresponding outer conductor. Unless the distance between the shield wires exceeds 60 feet, the shielding angle to the middle conductor is not considered.

8.2.7 Maximum Grounding Resistance

The maximum allowable grounding resistance shall be obtained as specified in Section 8.3.

8.2.8 Lightning Arrestors

Lightning arrestors shall be used on transmission lines only in cases where a shield wire cannot be installed (e.g., clearance near an airport), the maximum allowable grounding resistance cannot be obtained, or adjacent to extremely long spans where the lightning protection software shows the shield wire is insufficient.

8.3 Grounding and Cathodic Protection

This section covers the design of the grounding and cathodic protection systems for concrete and steel structures for transmission lines.

8.3.1 Grounding

8.3.1.1 Grounding Systems

Entergy's steel and concrete pole structures shall be "effectively grounded" as defined in Section 2 of the NESC. Shield wires are constructed, along with the associated grounding system, on all of Entergy's transmission lines for lightening protection. The use of proper structure grounding will reduce the ground resistance at the structures and will reduce line outages due to lightning strikes.

8.3.1.2 Steel Structure Grounding System

Steel poles shall be bonded to the shield wire by a copperweld jumper. The pole then acts as a ground rod to the ground line. Because the coating at the bottom of direct embedded steel poles insulates the steel, direct embedded poles shall be grounded. This grounding shall be done with ground rods driven into the earth and bonded to the pole. The same grounding is used to ground a steel pole bolted to a concrete pier or set in a concrete pile. Steel poles socketed into steel piles shall be bonded to the steel pile.

8.3.1.3 Concrete Structure Grounding System

Concrete poles shall be bonded to the shield wire through the grounding clip and a terminal lug at the pole top by a copperweld jumper. A copperweld wire shall then run down the pole to another terminal lug below ground. The wire may be internal or external. There are four options for grounding the direct buried pole: (1) connect the ground wire to the pancake at pole bottom; (2) extend the ground wire from the pancake to the ground rod; (3) connect the ground wire from the terminal directly to the ground rod; and (4) connect the ground to the substation ground grid using 4/0 copper. Ground wires shall be continuous (no splices).

For concrete poles set in steel piles, the ground wire shall be extended from the bottom lug and bonded to the pile.

8.3.1.4 Guy Wire Grounding System

In accordance with NESC requirements, guy wires shall be bonded directly to the steel structure or to the ground wire on a concrete structure using a copper weld wire bonded to the guy wire.

8.3.1.5 Achieving Desired Structure Resistance

Tests to verify that the required footing resistance has been obtained using the standard methods shall be performed by Seller.

Seller shall test for grounding resistance, which shall not be greater than:

69 kV & 115kV 13 ohms 138 kV & 161 kV 10 ohms 230 kV 7 ohms 345 kV & 500 kV (H-frames) 18 ohms

There are two acceptable methods to achieve these requirements: (1) driving additional rods and (2) installing a counterpoise that consists of 100 feet of conductor buried 18" deep parallel to the line.

8.3.1.6 Grounding at Substations

Bonding of Transmission Line Shield Wire to Substation Ground Grid

Electrical currents can be introduced on shield wires from a variety of sources. To prevent these currents from arcing across mechanical connections to get to the substation ground grid, a bonding conductor shall be provided.

The following common shielding configurations and requirements shall be permitted are detailed below:

a. Shield wire attached to Substation pull-off structure

Generally, the transmission line will be dead-ended outside the substation and the shield wire slack span into the station will be positively grounded to the pull-off tower with a jumper and the pull-off tower will be connected to the substation ground grid. It is the responsibility of the substation to make these connections. The last transmission structure in the immediate vicinity of the station shall not be bonded to the substation ground grid unless a specific grounding analysis is performed. b. Shield wire across station to dedicated shield wire pole

Since the shield wire pole is usually installed within close proximity to the substation; it shall be bonded to the substation ground grid. The last transmission structure in the immediate vicinity of the station shall not be bonded to the station grid unless a specific grounding analysis is performed.

c. Shield wire across station to exiting transmission line structure

One of the transmission structures on either side of the station shall be bonded to the substation ground grid. The structure selected for bonding shall be the one closest to the station or having the fewest physical obstacles between the structure and the station.

8.3.2 Cathodic Protection

The cathodic protection system is a method of protecting steel transmission line structures from corrosion, generally at the ground-line where moisture can mix with air to cause corrosion and thus deterioration and loss of strength of the structures. The protection system used is to attach either magnesium or zinc anodes to the structure.

These anodes provide sacrificial protection for the steel in the structures.

8.3.2.1 Soil Investigations

The soil investigation shall include soil corrosion recommendations to determine the need for anodes and the number required for each structure.

8.3.2.2 Anode Types

Magnesium anodes shall be used except that, in areas such as coastal marshes, zinc anodes may be used where recommended over magnesium anodes by the corrosion engineer based on in-situ conditions

8.3.3 Structure Protection

Steel poles, steel piles and steel guy anchors shall be protected as described below.

8.3.3.1 Steel Dead-End and Guyed Structures

All buried steel (embed poles and piles) at dead-end and guyed steel structures shall be installed with anodes as shown on the Framing Drawings and provided Assembly Drawings. The number of anodes per structure shall be as recommended in the corrosion consultation report or as deemed necessary by the corrosion engineer based on in-situ conditions.

8.3.3.2 Steel Tangent Structures

Steel tangent structures are generally not installed with anodes, anodes shall be installed on structures in areas of known corrosion problems, or when structures are to be installed adjacent to a pipeline or railroad. In these cases, installation shall be in accordance with provided Assembly Drawings in Attachment 1.

Guy Anchors for Steel and Concrete Structures

The steel helix type anchors for both steel and concrete poles shall be installed with anodes.

9 STRUCTURE DESIGN CRITERIA

9.1 Steel Poles

Entergy standard structure framings are shown in Attachment 1.

9.1.1 Tubular Steel Pole Purchase Specification

Details of structure design that shall be included in the purchase specification are:

ASCE Design Manual Requirements

Material Specifications

Pole Deflection Limitations

Fabrication Requirements

Protective Coating Requirements

Cathodic Protection

Grounding Requirements

Seller shall procure (or cause to be procured) tubular steel poles from tubular steel pole vendors on the Approved Vendor List (Attachment 5) for tubular steel pole vendors and direct the vendor to provide items in conformance with their applicable standard Energy specifications.

9.1.2 General Design Requirements

9.1.2.1 General

All designs shall be in accordance with the provisions of the latest NESC, ASCE/SEI Standard 48, and the requirements stated in this document. All construction shall be Grade B, as defined in Section 24 of the NESC Code.

9.1.2.2 Foundation Rotation

In addition to the applied loadings, all self-supported monopole and un-braced H-frame structures shall be designed with a 3 degree foundation rotation. The point of rotation is assumed to be at the ground line. Smaller foundation rotations for braced H-frame structures shall be considered on a case-by-case basis.

9.1.2.3 Deflection Limitations

The following pole deflection limitations assume 0 degree foundation rotation and shall be adhered to in the design of all poles. The percentage listed is the percent of the pole height above ground.

Table 9.1.2.3 – Deflection Limitations

Load Case / Wires	Tangent (Intact)	Running Angle (Intact)	Dead-end (Intact)	Dead-end (DE One Side)
NESC w/OLF See Loading District	10%	10%	10%	NSL
NESC without/OLF See Loading District	NSL	NSL	NSL	NSL
High Wind See Loading District	10%	10%	10%	NSL
Wind & Ice See Loading District	10%	10%	10%	NSL
Everyday No Wind or Ice - 60°F	3% ⁽¹⁾	3% ⁽¹⁾	3% ⁽¹⁾	NSL
Longitudinal Unbalance 1K at Each Phase Location	NSL	NSL	NA	NA
DE Stringing No Wind or Ice - 60°F	NA	NA	NA	1% ⁽²⁾

NA - Not Applicable

NSL - No Specified Deflection Limit

- (1) Camber if Deflection Exceeds 1%
- (2) Only if Specifically Requested

9.1.2.4 Pole Raking

For new project construction, cambering the pole when deflection exceeds 1% of the pole height above ground is the required resolution to concerns arising from what might (aesthetically) appear to be excess pole deflection.

9.1.2.5 Guyed Structures – Pre-Designed

The Designer shall select a pre-designed light duty pole, such as an SW Class H-6 equivalent, to be used as the pole in guyed framings in the pole spotting procedure. This type of pole will make available the range of heights to complete the spotting process. PLS-CADD will select the optimal pole height.

9.1.2.6 Selection of Pre-designed Poles – Optimizing Process

To use the line optimization features PLS-CADD, the Designer must select and input the pre-designed pole types and framings most suited for the Transmission Lines. This shall include the material, framings and pole heights, types and sizes.

9.1.2.7 Pole Design and Verification Process

The purchase order for the structures selected by PLS-CADD during the optimization process is then forwarded to the pole vendor along with a calculated load tree for each pole. The vendor will then review the design of the selected poles before pricing and fabrication. In some cases the poles selected may have to be revised to meet the design criteria.

9.1.3 Procurement

To purchase the poles and associated materials, Seller shall use a type of purchase requisition known as a "White Requisition".

"White Requisition" – This type of order is used to purchase material from Entergy's preferred vendors including steel and concrete poles, insulators and conductors. The pole order will generally include the preferred item plus most of the assembly attachment material, such as nuts, bolts, vangs. It is the vendor's responsibility to verify the size and number of each item. "White Requisitions" are also used to order non-stock-coded items.

9.1.4 Structure Hardware

The Entergy "Standard Structure Framings" in Attachment 1 lists the standard assemblies required for each structure framing. Each assembly drawing lists the bill of materials required for that assembly. The standard hardware parts were designed to meet the maximum tensions and loads calculated for the predesigned structures previously described but shall be verified by the designer. Unless Buyer grants an exception in writing, poles shall be ordered with sufficient step bolt mounting provisions.

9.1.5 Grounding and Cathodic Protection

See Section 8.3 for design information regarding the required grounding and cathodic protection for steel poles.

9.1.6 Hybrid Structures

Hybrid structures, a combination of a steel top section and a concrete bottom section, shall be used where ground water conditions may cause excessive corrosion of a steel pole. For such structures, the concrete bottom piece shall directly embedded using standard embedment details. Foundation and grounding details are discussed in Section 10 and Section 8.3, respectively.

9.2 Concrete Poles

This section covers the design and analysis of concrete pole structures for single and bundled conductor transmission lines. It covers single pole, two pole, and three pole structures with direct-embedded foundations, socket-type foundations and base-plated foundations all for use on tangent, running angle or dead-end structures. All standard structure framings applicable to this work are delineated in Attachment $\underline{1}$.

9.2.1 Spun Pre-stressed Concrete Pole Purchase Specification

Details of structure design that shall be included in the purchase specification include:

ASCE and PCI Design Guide Requirements

Material Specifications Pole Deflection Limitations

Fabrication Requirements

Testing Requirements.

Seller shall select a concrete pole vendor from the list of concrete pole vendors set forth in the Approved Vendor List (Attachment 5) and direct the concrete pole vendor to provide items in conformance with their applicable standard Entergy specifications.

9.2.2 General Design Requirements

9.2.2.1 General

All concrete pole and related designs shall be in accordance with the provisions of the latest NESC, the PCI and ASCE Guide Specifications, and the requirements stated in this document. All concrete pole construction shall be at least Grade B, as defined in Section 24 of the NESC Code.

9.2.2.2 Foundation Rotation

In addition to the applied loadings, all self-supporting structures shall be designed with a 3 degree foundation rotation. The point of rotation shall be assumed to be at the ground line.

9.2.2.3 Deflection Limitations

The following pole deflection limitations assume 0 degree foundation rotation and shall be adhered to in the design of all concrete poles. The percentage listed is the percent of the pole height above ground.

	Concrete Structure Type			
Load Case / Wires	Tangent Running Angle		Dead-end	Dead-end
	(Intact)	(Intact)	(Intact)	(DE One Side)
NESC w/OLF See Loading District	10%	10%	10%	NSL
NESC without/OLF See Loading District	2%	2%	2%	NSL
High Wind See Loading District	10%	10%	10%	NSL
Wind & Ice See Loading District	10%	10%	10%	NSL
Everyday No Wind or Ice - 60°F	1%	1%	1%	NSL
Longitudinal Unbalance 1K at Each Phase Location	NSL	NSL	NA	NA

	Concrete Structure Type				
Load Case / Wires	Tangent	Running Angle	Running Angle Dead-end		
	(Intact)	(Intact) (Intact)		(DE One Side)	
DE Stringing No Wind or Ice - 60°F	NA	NA	NA	1%	

NA - Not Applicable

NSL - No Specified Deflection Limit

9.2.2.4 Pole Raking

Where deflections under the everyday load case exceed 1% of the above ground pole height as described in Section 9.2.2.3, but do not exceed 2% the pole shall be raked to improve aesthetic concerns and minimize secondary moment effects. Where poles are to be raked, the Designer shall provide specific instructions identifying the degree to which the pole shall be raked to compensate for the calculated deflection under the everyday load case.

9.2.3 Procurement

To purchase the poles and associated materials, Seller shall use a type of purchase requisition known as a "White Requisition".

"White Requisition" – This type of order is used to purchase material from Entergy's preferred vendors, including steel and concrete poles, insulators and conductors. The pole order will generally include the poles plus most of the assembly attachment material, such as nuts, bolts, vangs. It is the vendor's responsibility to verify the size and number of each item.

9.2.4 Structure Hardware

The applicable Entergy "Standard Structure Framings" included as Attachment<u>1</u> lists the standard assemblies required for each structure framing. Each assembly drawing lists the Bill of Materials required for that assembly. The standard hardware parts are designed to meet the maximum tensions and loads calculated for the pre-designed structures previously described. Unless a deviation is granted by Buyer, poles shall be ordered by Seller with sufficient mounting locations for attachment of climbing provisions.

9.3 H-Frame Design

This section covers the design of concrete and steel H-Frame structures to be used in construction of the Transmission Lines. These standard framings cover transmission structures for single and double circuit construction using standard suspension insulators. Clearance has been provided for the possible use of bundled conductors.

9.3.1 Structure Types

Standard framings are developed for single and double circuit "Light" and "Medium" (HA2) tangent ($0^{\circ} - 1.5^{\circ}$) structures and "Light" and "Medium" (HB2) small angle ($1.5^{\circ} - 6.0^{\circ}$) structures. Standard tubular steel cross arms have been pre-designed and detailed for use in "Light" and "Medium" structures.

The standard framings are based on the base assumption that steel structures will be X-braced and concrete structures will not be X-braced. The pole supplier shall determine if X-braces are required for each structure and shall detail and supply the X-braces and connection hardware if required.

Special "Uplift" framings are included for use in certain structures to address uplift forces in those structures. These structures use the "Light" cross arms with extra vangs to dead-end the conductors.

9.3.2 Cross Arm Design

The maximum allowable spans for the pre-designed standard cross arms are based on the maximum vertical load imposed on the arms. The load cases reviewed for each cross arm are NESC designated loadings with overload factors. Maximum arm deflections range from 1 inch to 2 inches.

The tubular steel cross arms are designed to support the vertical load of the various standard conductors used by Entergy on the standard H-Frame framings. The maximum loads for each of the Standard Framings are shown on the Framing Drawings.

The "Light" and "Medium" standard cross arm sizes are as follows:

Light Cross Arm – TS 6" x 6" x 3/16"

Medium Cross Arm – TS 8" x 8" x ¼"

Shield Wire Arm – TS 4" x 4" x 3/16"

The required use (loading) for the standard cross arms is as follows:

69 kV – Use the Light Cross Arm – for all conditions

161 kV – Use the Light Cross Arm – for ½" Ice loadings

Use the Medium Cross Arm – for 1" Ice loadings

230 kV – Use the Medium Cross Arm for all conditions

9.3.3 Cross Arm Assembly Details

The assembly drawings for attaching cross arms to poles are included in the voltage specific assemblies.

9.3.4 Rock Anchors

In rock formations, where screw type anchors will not penetrate the rock, rock anchors shall be used. There are two types of rock anchors available, to be selected based on in-situ conditions and engineering calculations.

9.3.5 Expanding Rock Anchors

Rods have a diameter of 1.0 inch and an ultimate strength of 36,000 lbs. The limitation of 36,000 lbs can be overcome by using twin anchors. A more stringent limitation is that the rods are non-extendable. This prevents the expanding rock anchors from being used when the non-fractured bedrock is deeper than about four feet below the surface.

9.3.6 Grouted Rock Anchors

The anchors have a 1 ¼ inch diameter round shaft ending in a 4-inch diameter bell. The anchors can be extended with either 1 ¼" round shaft extensions or 1 ½" square shaft extensions. The anchor assembly has an ultimate strength of 70,000 lbs. The strength of the installed anchor (resistance to pullout) is dependent upon the rock type and the dimensions of the grout column. The characteristic of the rock that dominates the calculation for anchor depth is the equivalent cohesion. The installed anchor strength is calculated by multiplying the surface area of the grout column in each layer by the equivalent cohesion of the rock in that layer. For conservatism, any contribution from the overburden shall be ignored.

The High Wind and Heavy Ice Tensions shall be multiplied by 1.65 to provide a safety factor for the anchor installation. For the NESC Zone load case (NESC 250B) a safety factor of 1.0 shall be used as allowed by the code, since that load case already includes an Overload Factor of 1.65. The resulting worst case force shall be resisted by the friction between the grout column and the surrounding rock.

Anchor strength = (circumference) (column length per vertical foot) (constant of 0.9) [(layer 1 thickness)(layer 1 cohesion) + (layer 2 thickness)(layer 2 cohesion) + ...]

Seller shall procure that the anchor manufacturer calculates the required anchor depth using their software, but the effective cohesion shall be the parameter that dominates the result. For simplicity, the formula above uses just the effective cohesion. The constant 0.9 is a factor to account for the possible effects of other rock characteristics

The dimension that is to be specified is the distance along the anchor shaft from the ground surface to the bottom of the anchor. The minimum anchor length engaging rock is five feet.

The grout shall be pumped into the hole to ensure that a solid column is produced.

9.3.7 Guying Hardware

Following are listed the strength values in Entergy's Standard Guying Assembly which limit line conductor tensions and are required for this Project.

9.3.7.1 Insulator Assembly

Entergy's Standard Polymer Dead-End Insulators have an ultimate tension capacity of 50,000 lbs. The NESC Strength Factor for insulators is 0.5, therefore the Routine Test Load (RTL or working load) of 25,000 lbs is used.

9.3.7.2 Steel Vangs (Steel Poles)

Steel Dead-End vangs are thru vangs and can be designed for any applied tensions. The NESC Strength Factor for the vangs is 1.0.

9.3.7.3 Pole Eye Plates for Conductor or Shield Wire (Concrete Poles)

The standard guying attachment is the "AS2720 Double Guying Tee" from Hughes Bros. The Ultimate Strength (maximum tension load) is 35,000 lbs per hole. The NESC Strength Factor is 1.0 for NESC Rule 250B Tensions (OLF=1.65) and 0.8 for Extreme Load Tensions (OLF=1.0) for Rule 250C.

9.3.7.4 Pole Eye Plates for Guy Wire (Concrete Poles)

The standard guying attachment is the "A2132 Heavy Dead End Tee" from Hughes Bros. The Ultimate Strength (maximum tension load) is 70,000 lbs. The Strength Factors are the same as for the above "Double Guying Tee". The maximum tension is along the guy slope, thus limiting the line tension depending on the actual guy slope.

9.3.7.5 Double Arming Bolts (Concrete Poles)

The standard bolt used in Entergy's Dead-End Assemblies is an ANSI C135.1, 7/8" "Double Arming Bolt". The maximum Tensile Strength is 25,400 lbs, the maximum shear strength through threads is 17,270 lbs. and the maximum shear strength through the shaft is 24,350 lbs. The shear strength through the threads is always used for the Dead-End Connection. The NESC Strength Factors are also the same as for the "Double Guying Tee". The allowable bolt strength for combination shear and tension loads, such as the guying assembly, is the calculated "interaction stress". These bolts are the limiting factor, depending on guy slope, of the line tension in the guying assembly.

9.3.7.6 Thimble Clevis

The thimble clevis used in the Dead-End Assembly has a 1" pin and is rated at 60,000 lbs. Ultimate Strength. The NESC Strength Factors are the same as the "Double Guying Tee".

9.3.7.7 Extension Link

The extension link is used in place of the thimble clevis when a double down-guy is used with two anchors. The link uses a 1" pin and is rated at 60,000 lbs. Ultimate Strength. The NESC Strength Factors are the same as the "Double Guying Tee".

9.3.7.8 Vari-Grip Dead-End

The vari-grip shall be rated for a 19#8 guy wire with an Ultimate Strength of 43,240 lbs. and 61,500 lbs. with a 19#6 guy wire. The NESC Strength Factor is 1.0.

9.3.7.9 Turnbuckle

The turnbuckle shall be a 1" x 6" with jaw and eye ends with an Ultimate Strength of 50,000 lbs. The NESC Strength Factor is 1.0.

The following table gives the allowable line tension based on the guy assembly and guy wire slopes. All loads are in Kips.

Assembly Part	Ultimate Strength	NESC Strength	Allowable Load	Line Tension	Line Tension
		Factor		Guy Slope	Guy Slope
				1.5:1	1:1
Dead-End Insulator	50.0	0.5	25	25	25
19#8 Guys	43.2	0.9	38.9	21.6	30.6
19#6 Guys	61.7	0.9	55.5	30.8	39.4
Double Guy Tee (NESC)	35.0	1.0	35.0	19.4	24.8
Extreme Loads	35.0	0.8	28.0	15.5	19.9
Dead-End Tee (NESC)	70.0	1.0	70.0	38.9	49.6
Extreme Loads	70.0	0.8	56.0	31.1	39.7
7/8" D. A. Bolt (NESC)	T=25.4	1.0		21.2	28.0
Extreme Loads	V=17.3	0.8		17.0	23.0
1-1/2" SS Screw Anchor	70.0	1.0	70.0	38.9	49.6
Thimble Clevis (NESC)	60.0	1.0	60.0	33.3	42.5
Extreme Loads	60.0	0.8	48.0	26.7	34.0
Vari-Grip (NESC) w/ 19#8	43.2	1.0	43.2	24.0	30.6
Extreme Loads	43.2	0.8	34.6	19.2	24.5
Turnbuckle (NESC)	50.0	1.0	50.0	27.8	35.5
Extreme Loads	50.0	0.8	40.0	22.2	28.4
Extension Link (NESC)		1.0			
Extreme Loads		0.8		1	

 Table 9.3.7.9 – Allowable Line Tensions based on Hardware Limitations

9.3.8 Guyed Structure Limitations

9.3.8.1 Concrete Structures

The maximum line tension that can be applied on a guyed concrete structure is limited by the combined stress on the 7/8" D. A. Bolts, where the maximum guy tension is 18.0 kips on the 1.5:1 slope. The governing design condition, which is considerably less than the ultimate applied tensions that shall be applied on the larger standard conductors for the Hurricane loads (150 mph wind speed.).

9.3.8.2 Steel Structures

Welded steel thru vangs replace the tees and bolts on the concrete pole and these vangs shall be designed to support all of the possible applied loads. Therefore, as provided in the table, the 19#8 guys, the standard guy material, will govern the line tension limit when this guy wire is used. Where 19#6 guys are used, the anchor hardware will govern the line tension limit.

9.3.8.3 Heavy Ice Zone

In the heavy ice zones (NESC 250D zones), standard through bolts, guy tees and single 19#8 guy wire may be inadequate for larger conductors or bundled configurations. Special design considerations shall be investigated under these conditions.

9.3.8.4 Double Down-guy Assemblies

Double down-guy assemblies shall be used when it is determined that the soil is incapable of supporting the applied load with one anchor or where the loads exceed the allowable guy tension. The double down guy assembly shall consist of one attachment to the pole, a link with two rollers, and two guy wires and two anchors. Double Down-guy assemblies shall use 19#8 guy wires. The anchors shall be separated by at least five (5) feet.

9.3.8.5 Guy Anchor Groups

All standard guyed structure framings reference a particular Guy/Anchor Group which defines the structure voltage, and in turn provides the required number and size of guys, type of anchor, guy configuration and structure type.

9.3.8.6 Cathodic protection

Guy anchor assemblies shall be provided with cathodic protection by the installation of anodes.

Guy anchor assemblies shall be protected by anodes as shown on the "Guy Anchor Group" detail drawings. Refer to Section 8.3 for details.

9.4 Spacing of Dead-End Structures

Dead-end structures shall be required where necessary to carry eccentric loads developed due to conductor tensions. Such dead-end structures shall also be required where necessary as anti-cascading structures, or where they are necessary to facilitate construction. At a maximum spacing, dead-end structure shall be spaced such that no more than two reels of conductor and a single splice are needed between them. While the length of conductor contained on a reel can vary based on the conductor's diameter and unit weight,

for most commonly used conductors this will result in a maximum spacing of approximately 4 miles between dead-end structures.

9.5 Considerations at Major Crossings

The Transmission Lines shall be designed to provide additional reliability at major crossings, in particular along major highway crossings serving as evacuation routes from coastal area. Design and maintenance/replacement activities will apply the following:

- 1. All crossing structures are non-wood, for all voltages
- 2. If a wood crossing structure is to be replaced, it shall be replaced with non-wood structure
- 3. All highways are crossed at an angle as close to perpendicular as possible

4. No conductor or shield wire splices within two spans of the crossing span unless expressly approved in writing by Buyer

5. Where conductor/shield wire splices are unavoidable, or where they are installed during conductor maintenance, install implosive, full tension splices or shunt devices in conjunction with the conventional splice.

6. Install redundant insulator configurations on all crossings (e.g., braced post insulators, V-string insulators, semi-strain insulators, etc.)

7. Make shield wire connections more robust at the crossings (e.g., use shackles with nut, vs. shackles with pins, etc.)

8. No guys on crossing structures if possible, and where guys shall be installed, install double guys

9. Install highway crossing structures in locations difficult for vehicles to hit, e.g. behind ditches

10. Provide crash barriers on all highway crossing structures that are not installed in locations difficult for vehicles to hit

10 STRUCTURE FOUNDATIONS

This section covers the design of structure foundations.

Structure foundations shall be designed to meet the NESC District Loading and Everyday Load Cases, as discussed in Section 5.1; and considering the safety factors and deflection limitations discussed in Section 10.2. Note that loads shall generally be extracted from pole manufacturer calculations where the structure has been optimized for a high percentage of utilization. Where structures are designed in groups, the reaction used shall be that of the group (as opposed to loads derived from PLS or elsewhere for the specific location). Where manufacturer calculations are not available, foundations shall be designed for the published class/capacity of the pole used (to assure that future modifications on the line do not overestimate the foundation capacity based on the strength of the pole). Where this is not done, a notation shall be made on the plan and profile sheet stating that the foundation was determined considering actual loads in lieu of the structure's capacity.

10.1 Soil Information

The Designer shall obtain as much subsurface information as practicable. The basic sources of information are: (1) actual soil boring samples obtained from geotechnical investigations; (2) Geological maps; (3) data from existing U.S. Dept. of Agriculture maps; or (4) other Geotechnical sources (e. g., DOT files, customer soil records, etc.)

Actual soil data obtained from structure locations is preferable. Generally, soil borings are made at angle and dead-end structures and at intervals of approximately two miles within tangent runs depending on the terrain.

Soil information used in design shall be provided by Seller to Buyer.

10.2 Design Methodology – Lateral Load

10.2.1 Program Description

The Designer shall use the computer programs Moment Foundation Analysis and Design (MFAD), and Foundation Analysis and Design (FAD) to design for lateral loads.

10.2.2 General Acceptance Criteria

The Designer shall apply the following generally accepted factors of safety for the calculated lateral loads as related to the calculated ultimate capacity of the pile and the acceptable deflection and rotation of the pile:

Description	Normal Soil
Total Ground Line Deflection ⁽¹⁾	3.0 in.
Total Fnd. Rotation ⁽¹⁾	1.5 deg.
Non Recoverable Deflection	1.0 in.
Non Recoverable Rotation	1.0 deg.
Safety Factor (Tangents)	1.2
Safety Factor (Angles/DEs) NESC 250B	1.0
Safety Factor (Angles/DEs) other load cases	1.65

 Additionally, for DE Structures, total foundation rotation and ground-line deflection shall be limited to 0.5 degrees and 1 inch under Everyday load case with all conductors on one side only.

10.3 Foundation Types

10.3.1 Basic Foundation Types

The Designer shall select from the following six basic foundation types typically used by Entergy on steel and concrete pole structures: Direct Embedment Foundation, Steel Pile with Socket Foundation, Cap/Base Plate Foundation, Steel Pile with Anchor Bolt Foundation, Drilled Pier with Anchor Bolts Foundation, and Concrete Pile with Steel or Concrete Pole using Socket Foundation. Seller's foundation engineer shall determine suitable foundation types and dimensions. Alternative foundation types shall only be used if expressly approved in writing by Buyer.

Foundation elements shall be designed using applicable material design specifications (e.g. AISC 360 for steel elements, ACI 318 for concrete elements, etc.)

Reveal height for concrete or steel socket piles shall be between 4 feet and 5 feet to facilitate concrete placement and to minimize required excavation for the socketed pole. Foundation height for base-plated poles shall be at least 2 feet, to raise anchor bolts above the ground and the bulk of the wet underbrush. The Designer shall require taller reveals in floodplains, where requested for constructability purposes, or where otherwise needed. The Designer shall not all reveals outside these specifications on the foundation drawings and/or staking sheet.

10.3.2 Grounding and Cathodic Protection

The steel pile shall be designed to act as a ground for both steel and concrete structures. Socket connections and anchor bolt connections using steel piles shall be positively connected between the pole and pile using a #4 copperweld wire connected between the pole and the Two Hole NEMA Pad welded to the pile for a good ground. The cap/base plated connections shall be designed to provide a good grounded connection. Steel and concrete poles supported by concrete drilled piers shall be grounded to copperclad steel ground rods.

Where cathodic protection is required, the anodes shall be connected to the NEMA Pads as indicated on the cathodic protection detailed drawings. In general, unless an analysis for corrosion potential indicates otherwise or the structure is located in exposed bedrock, anodes will be required at all guy anchors, and dead-end or large angle structures supported on steel foundations or embedments. In general, unless local conditions warrant (brackish marsh, shared ROW with railroads or pipelines protected by impressed current cathodic protection, etc.) anodes are not usually required for tangent structures on structures supported on concrete foundations or embedments. Reference is made to Section 8.3 of this Appendix 2.

11 ATTACHMENTS

Attachment 1 – Applicable Standard Framing and Assembly Drawings

Attachment 2 - NESC and Entergy Clearance Requirements

Attachment 3 – Quick Estimating Corona Loss Curves

Attachment 4 – Example ROW

Attachment 5 – Approved Vendor List¹

Attachment 6 - Entergy Loading Districts

¹ This Attachment provides an Approved Vendor List. This Approved Vendor List is in addition to that found in the Scope Book and is considered acceptable for use, and actually preferred.

ATTACHMENT 1

APPLICABLE STANDARD FRAMING AND ASSEMBLY DRAWINGS

SLE3-DEPY-S 50D; 5K5 (70)

WIRE DATA: PHASE CONDUCTOR (2) 24 FIBER OPOW (GW2400 - 54mm2 / 528) DIA=0.528", WT=0.362 LBS/FT, RTS=18,432 LBS 1" RADIAL ICE, 15" F MAX TENSION 7833 LBS INITIAL EVERYDAY COND, 60" TENSION 2036 LBS INITIAL (3) 954.0 KCMIL 45/7 STRAND ACSR "RAIL" (TRIPLE BUNDLED) DIA-1.165", WT=1.0750 LBS/FT, RTS=25,900 LBS
1" IDE, 15F MAX TENSION 13623 LBS INITIAL (SUB CONDUCT) EVERYDAY CONDITION, 60% TENSION 4903 LBS INITIAL (SUB CONDUCT) SPAN DATA:

NOTES:

2.

MECHANICAL LOADING CRITERIA:

CASE 1 - NESC MEDIUM: 4 PSF WIND ON WIRES AND STRUCTURE, 1/4" RADIAL ICE, 15" F. TRANSVERSE WIND OUF=2.50, LONGITUDINAL OUF=1.65; VERTICAL OUF=1.50.

CASE 2 - HEAVY ICE: 1" RADIAL ICE, NO WIND, 15" F. OLF=1.0 CASE 3 - HIGH WIND: 25.6 PSF WIND ON WIRES AND STRUCTURE, NO ICE, 60° F, OLF=1.00.

SHIELDWIRE

. V, T AND L IN POUNDS, W IN PSF (OLF INCLUDED)

WIND SPAN = 750 FT (INTACT) 375 FT (DE) WEIGHT SPAN = 2000 FT (INTACT) 1340 FT (DE) RULING SPAN = 1000 FT

		LUADING TABLE *					
ITE)	AS	LOAD	CASE 1	CASE 2	CASE 3	CASE 4	
		- T1	10532	11078	7702	2879	
	SW	V1	1887	4576	774	774	
INTACT		L1	0	0	0	0	
		T2	60490	57797	49015	20802	
	COND	V2	14386	23110	6950	6950	
		L2	0	0	0	0	
		T1	5266	5539	3851	1440	
	SW	V1	1289	3082	535	535	
DE ONE SID	E	L1	4945	5539	3429	1440	
	-	T2	30245	28899	24508	10401	
	COND	V2	9586	15448	4622	4622	
		L2	28684	28899	21712	10401	
WIND ON ST	WIND ON STRUCTURE		10	0	25.6	0	
STRUCTURE WEIGHT		VS	TO BE DETERMINED BY TAB				
LINEMAN & EQU	JP. WEIGHT	V3	500				

Appendix 2 – HV Transmission Page 82

ITE) 1 2 3 4 5 6 7	M QTY. 1 1 1 8 1 2 8	VARIABLE BOLT STOCK NO. EN000171 EN000358 EN000362 EN000426 EN000360 LS909XX EN005685	BILL OF N ASSY, DOUBLE POLY NUT, SQUARE, STL, G CLIP, BONDING, 7/8", WIRE, COPPERWELD, # NUT, LOCK, SQUARE, CONNECTOR, #4 COPP BOLT, DOUBLE ARMINI WASHER, FLAT ROUND	ALV, A STL, 0 44 (.111 STL, 6 PER CR G, 7/8 9, 2" S	FOR FOR MSI-G GALV, 58 Ibs ALV. IMPIT "xVAF TEEL,	ALS CONCRETE WITH G DESCRIPTION C135.1, 7/8" DIA, 9 FOR GROUNDING T s/ft) ANSI-C135.1, 7/8" RIABLE LENGTH, GAI GALV, FOR 7\8" E	ROUNDI 9 THD 10 7/8" DIA. 9 LV, w/4 30LT	NG BOLT THD SQ NUTS		
				6						
						ENTERGY STANDARD DWG.				
					DESIGN APPROVAL		STANDAR	DS APPROVAL		
	1) All	Double Arming Bolts sha	Il be trimmed to avoid	d		SIGNED /	DATE	SIGNED		
	cor	nted with guys, grounding	g, conductors, etc. and it.	a			SCV	(CON	ODETE)	
	2) Gra	punding Lug location may embly depending on pole	/ be above or below e tank ground location.			DOUBLE F	POLY	MER F	POST INS.	
						APPROVED BY: EJO	;	DATE:	01-27-97	
						DRAWN BY: FC	SI	ESI NO	TMD207A1	
							No	BI	T2PC	
1 NO.	5-28-03 DATE:	REV. DIM., CHANGE WASHER F	FROM SQ. TO FLAT ROUND	ITRON BY:	APPR:	Entergy	PLOT	1=8	SH 1 OF 1	

			BILL OF N		214			
						CROUNDI	NC	
ITCM		STOCK NO	ASST, SINGLE FOLT	FUSTFOR	DESCRIPTION	GROONDI	10	
1	4	510CK NU.						
2	1	EN000358	NUT, SQUARE, STL, GALV, ANSI-CI35.1, //8 UIA, 9 IHU					
3	1	EN000362	ULP, BUNDING, //B, SIL, GALV, FUK GROUNDING TU //8 BULT					
4	6	EN000426	NUT, LOCK, SQUARE, STL, GALV. ANSI-C135.1. 7/8" DIA: 9 THD					
5	2	EN012280	WASHER, SQUARE CURVED, STL, GALV, 7/8" BOLT, 3"x3"x1/4"					
6	1	EN000360	CONNECTOR, #4 COPPER CRIMPIT					
7	2	LS909XX	BOLT, DOUBLE ARMING, 7/8"xVARIABLE LENGTH, GALV, w/4 SQ NUTS					
8	4	EN005685	WASHER, FLAT ROUND	D, 2" STEE	, GALV, FOR 7\8	" BOLT		
						BLT-	P-C	
					E	NTERGY ST	ANDARD	DWG.
					DESIGN APPROV	/AL	STANDAR	RDS APPROVA
1) All	Double Arming Bolts sho	II be trimmed to avoi	d		1		1
	con	flict with guys, grounding	g, conductors, etc. an	d	SIGNED	DATE	SIGNED	/ DA
	pair	ited with galvanized pair	it.		BOLT	ASSY	(CON	CRETE)
	2) Gro	unding Lug location may	be above or below		SINGLE	POLYM	AFR P	OST INS
	ass	embly depending on pole	tank ground location		SINGLE			031 114.
		2			APPROVED BY:	EJG	DATE:	01-27-97
					CHECKED BY:	JWS	SCALE:	NONE
					DRAWN BY:	ECSI	ESI NO.	TMD211A
1 5	70 07	00000000000	ASHER DIM	ITRON		No.	В	LTPC
1 5-	-30-03	CHANGE V	INSTER, DIM.	TIRON IST	- Enterm	DIOT	1.0	CU 1 05
	DATE:	REV	131014	BT: APP	6	FLUI	1=0	130. I UF

TEMPUAM-Worklewilli2M-LITAPETSP047,D-TDocs,S-Template\ESI\STANDARDS\Transmission\AMISC\TMD21141.DWG, 5/20/2010 5:21:50 PM, ewilli2

TEMPVAM-Work/ewilli2/M-LITAPETSP047, D-TDocs, S-Template/ESI/STANDARDS/Transmission/AMISC/ITMD212A3.DWG, 12/3/2010 4:15:45 PM, ewill2

TEMPVAM-Worklewilli2W-LITAPETSP047,D-TDocs,S-Template/ESI/STANDARDS/Transmission/AMISC/TMD223A9,dwg, 5/28/2010 5:09:35 PM, ewilli2

TEMPVAM-Worklewill21M-LITAPETSP047,D-TDocs,S-Template/ESI/STANDARDS/Transmission/AMISC/TMD224A6.dwg, 5/28/2010 5:14:25 PM, ewill2

TEMP\AM-Worklewill2W-LITAPETSP047,D-TDocs,S-Template\ESI\STANDARDS\Transmission\AMISC\TMD280A0.DWG, 6/10/2010 5:02:10 PM, ewill2

Attachment 1: Applicable Standard Framing and Assembly Drawings

Attachment 1: Applicable Standard Framing and Assembly Drawings

			BILL OF M	ATERI	AI	S	
ITEM	OTY	STOCK NO	-,,		DES	RIPTION	
1	1*	EN013170	HANDLE CLAMP METAL C		ULS.	C/F/R 3" MOLDS	(1 PER 50 CONNECTIONS)
2	1	32046156	MOLD 19 # 9 COPPERWEIT	STRANDE		ABLE TO VERTICAL	STEEL (1 PER 10 CONN.)
3	1	EN013619	CARTRIDGE EXOTHERMIC #	150 CHAR		20 ALLOY FOR C	U-TO-CU AND CU-TO-STEEL
4	1	EN013173	CARTRIDGE, EXOTHERMIC, #	200 CHAR	GE, I	WELD METAL	
5	1	EN019252	COMPOUND: ELECTRICAL	INT. INHIB	ITOR	GREASE LIKE 8	07 TUBE
6	1	EN019331	COATING: PROTECTIVE 1/2	PINT: TO	UCHI	P FOR ALL TAR	EXTENDED
7	50 ft.	32127987	WIRE CAMO COPPERWELD	ANTI-THE	T 1	9 #9 AWG 40% (
8	1	32046150	MOLD, 19 # 9 COPPERWELD	STRANDE	D C	ABLE TO $4/0$ (1	PER 10 CONNECTIONS)
*		ONE FACH	PER 50 CONNECTIONS				
#		E 6' ANODES _		STEEL	POLE	DIRECTLY TO DVE GROUND) SUBSTATION	FENCE
NOT	ES:		·			GROU	NDING GRID
1. F ¹ TI M 2. C T 3. SI	OR INS NSTALI MD300 IATERIA OAT AI O NUT EE DWO EE DWO	TALLATION (LATION OF (AND TMD30 AL. LL MECHANI(S) WITH ITEN G. TMD295, AND MATER	OF ANODES REFER TO DOCU CATHODIC PROTECTION ANOD 22 FOR ANODE INSTALLATION CAL CONNECTIONS (THREADS M #5. TMD296 OR TMD297 FOR PC RIAL.	MENT TITL ES". SEE I DETAILS AND BUS DLE GROUN	ED DWG' AND BAI	S. R	
4. G T TE 5. IT	ROUND HAT SI ERMINA EMS 1,	ING IN ACCO UPPORT SHI TE IN A SU , 2 & 8 ARI	DRDANCE WITH THIS DRAWING ELD WIRE SPAN(S) THAT CR BSTATION. E CADWELD ITEMS — NOT IN	G IS FOR OSS OR STALLED.	POLE	(S)	
						GND	-S-POLE-SUBSTA
						ENTER	RGY SERVICES, INC.
						Transmission	LineDesign Standard
5 1-	-5-15	BOM, ITEMS 2,3	4,7,& 8, ADD ITEM NUMBERS TO DRG	ECW FWM	WLS	GROUNDING. ST	EL POLE TO SUBSTATION GRID
3 07-	-22-10	IUIE 4, DEL. ENG	GROUND ROD DIM	CBM JKA	ECW	STRUCTU	JRAL ASSEMBLY DETAIL
2 12-	-17-09	RE	V STK CODE FOR ITEM 8	HDR ECW	ECW	STD NO.	SCALE: NONE
1 06-	-30-06		GENERAL REVISION	MDB			No. TMD303A5
0 02-	-11-03		ISSUED	ITRON DUK	APPP	Entergy	PLOT 1-1 SH 1 OF 1
E HO.	WILLI2	12-	15-2014	BT: CHK:	APPR		

TEMPIAM-Worklewilli2M-ULTAPETSP047, D-TDocs, S-Template/ESI/STANDARDS/Transmission/MISC/TMD339A2,dwg. 5/28/2010 5.03:37 PM, ewill2

			RILL OF	- N	IAII	-KI	ALS		
		OVE	RHEAD GROUND WIR	E, SU	SP. 3	0-50	w/YOKE, OPGW		
ITEN	M QTY.	STOCK NO.					DESCRIPTION		
1	1	LS9010XX	CLAMP, SUSP: DOU	BLE (2 CL/	AMPS)	.,ALUM AL,15K,W/48	3" ARM RODS, 30'-	-60' MAX. ANGLE
2	2	0032020410	CLEVIS EYE: STRA	IGHT,	30K,	2-7/	/8" LG,1-5/8" EYE	WD,3/4" EYE RAI	D, 5/8" PIN DIA
3	1	0032020414	PLATE, YOKE: DELT	A, DU	ICTILE	IRON	, 18" LONG, 30K	. /	
4	1	000004375	BALL CLEVIS: 45	DEG	r, 30k	(, 3/4	4" PD, CLASS 52-3	5/5	
_°	1	0000000486	SOCKET CLEVIS: S	IRAIG	янт, з	OK, 5	/8" PD, CLASS 52	-3/5	
		ITEM #1 AVAILABLE 57MM 0000017195 00 52MM 0000017198 00	5 ARMOR ROD 0.450-0.475" DIA 1528-0.555" DIA 1615-0.646" DIA 1647-0.679" DIA	s co	ME W		AS CLAMPS	ON POLE	
							OH	G-SUT-OP-XX	
	1)	ITEM #1 OPGW DEPEND	ENT.				ENTER	RGY SERVICES,	INC.
	Č.	THIS ITEM IS SELECTED	FOR EACH PROJE	CT.			Transmission	n LineDesign 1RE, SUSP 30-50	N Standard
2	5-15-07	REVISED NAME & DES	CRIPTION.				STRUCT	URAL ASSEMBLY	DETAIL
		COMBINED DWGS TMD34	0 & TMD341	TWF	HSK	HSK	STD NO.	SCALE:	NONE
1	8-01-06	EXPANDED DESCRIPTIONS (DFITEMS 1 & 2	CDR	HSK	HSK		No. TM	D341A2
0	5-24-04	CREATED			HSK	HSK	Enterny	DI OT	
ND.	DATE:	REVISION		BY:	CHK:	APPR	Tureig	PLUI 1=1	5H.1 0F1
	tfinc90	6/25/2007							OHG = SUY = OP = X

TEMPVM-Worklewilli2M-LITAPETSP047, D-TDocs, S-Template/ESI/STANDARDS/Transmission/MISC/TMD341A2.dwg, 5/28/2010 5:16:29 PM, ewilli2

Attachment 1: Applicable Standard Framing and Assembly Drawings

TEMPVaM-Work/ewilli2(M-LITAPETSP047,D-TDocs,S-Template/SSI/STANDARDS/Transmission/AMISC/TMD403A0.dvg, 5/28/2010 5:05:01 PM, ewill:2

	It ULTMATE 51535FERGTH (LBS) 35,000 5 52,000 5 52,000 5 25,000 5 25,000 5 25,000 5 25,000 5 25,000 5 25,000 5 25,000 5 25,000 30,000 30,000 5 25,000 30,000 35,000 5 25,000 5 25,000 30,000 35,000 5 30,000 5 25,000 5 30,000 5 25,000 5 30,000 5 30,000 5 5,000 5 30,000 5 1// A	0.070R5 (8P28) N/A ASSEWBLY N/A N/A N/A N/A N/A N/A N/A N/A	X S. INC. S. INC. S.TANDARD BRACD POST BBLY DETAIL E. A. T. S. C. A. O. 11 BP2-161-XX
	ac weight River 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ULED COND FINTEROY STOCK NO N/A N/A N/A N/A N/A STI25553 STI25525 STI25555 STI25525 STI25555 STI25552 STI25552 STI25552 STI25555 STI STI25555 STI STI25555 STI STI25555 STI25555 STI STI25555 STI STI25555 STI STI25555 STI STI STI STI STI25555 STI STI STI STI STI STI STI STI STI STI	BP2-161
	CATALOG BAS NUMBER MATE YOB-65A F.S B2201076AL48A C.S. SEE TABLE ALL CONSLESA C.S. SEE TABLE AL. VCC-65 D1 SCC-65 D1 SCH-254AL2 CONSL-254 SCH-255 D1 SCH-255 D1 SCH-255 D1 SCH-254 CONSL-254 SCH-255 D1 SCH-255 D1 SCH-256 D1 CH-257 D1 CH-256 D1 CH-257 D1 CH-256 D1 CH-257 D1 CH-257 D1 CH-256 D1 CH-257	FOR BUNDLE BUNDLE (ITEM 6) N/A N/A <td>ENTERG TRANSMISSIC POLVMER ASSY 161 LV INSUL 51D NO. TADOG4 BAttergy</td>	ENTERG TRANSMISSIC POLVMER ASSY 161 LV INSUL 51D NO. TADOG4 BAttergy
S	IST ASSY FOR TELIV ER, MOH POL. ISTAV CONDUCTOR STE ALT. //SOCKET EVE MIRE MIRE MIRE () () () () ()	RS (BP2) ASSEMBLY ASSEMBLY ASSEMBLY ASSEMBLY ASSEMBLY ASSEMBLY NOT TET ASSORED NOT TET ASSORED NOT TET ASSORED NOT TET ASSORED NOT TET ASSORED AND TET ASSORED NOT TET ASSORED AND TET ASSORED	Image En M En EN AN En EN AN En EN EN
ATERIAL	ED UNE PO RIPTION RIPTION SSY, POLYMA SSY, POLYMA SSY, POLYMA SSY, POLYMA SSY, POLYMA CO FIEW 2 SF PART OF RAGLE SZE AS PART OF AS PART OF CO FIEW 2 SF ITEM 8) SF ITEM 8)	CANDUCTOR ENTEROY STOCK NO. 32068992 11 32068992 11 32085995 11 32085995 11 32020598 12 32020598 12 32020518 12 32020518 12 12 22020718 12 22020718 12 22020718 12 12 12 12 12 12 12 12 12 12 12 12 12	BLACE BL-DAM I
BILL OF M/	2-1/2" POLVMER BRAA DESCO DESC	POR SNOLL POR SNOLL (TEM 4) (TEAMP) (TE-01158E TE-01158E TE-01158E TE-01158E TE-01058E TE-	LC 9753 & COM MARMER T CONE 1978 & COM MARMER T CONE 1978 PAR-OT DAVIS THU 2 SCC, ADD COOMA 990 THU 2 SCC, ADD COOMA 990 ADD 200
	NSULATOR, NSULATOR, INSULATOR, RED, ARUGE CAMP, SUS CAMP, SUS CAMP, SUS NSULATOR, INSULATOR, INSULATOR, INSULATOR,	TAKEOFF ANGLE ANGLE 15 15 15 15 15 15 15 15 15 15 15 15 15	
	STOCK NO. STOCK NO. EN004375 EN016149 L5900XXX L5900XXX L5900XXX L5900XXX L5900XXX L5900XXX L5900XX EN01619 EN01651 EN016651	DIA. DIA. NO. ROY W/ABWW NO. ROD (1) NO. 11/28 2075 NO. 11/28 2075 NO. 11/28 2075 NO. 11/28 11/28 NO. 11/28	
	QUANTITY 0.1 0.1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1	ARMOR ROD IIIII (ITEN 3) 51V. IIIII 2012 111 NIC. w/ ITE NIC. w/ I	
		CONDUCTOR CONDUCTOR 1994 (56/1), LAPANIC 7 1952 (13/1), BETTEN 2014 (13/1), BETTEN 2014 (13/1), DERWIG 2122 (13/1), DERWIG 2123 (13/1), DERWIG 2124 (13/1), DERWIG 2125 (13/1), DERWIG 2125 (13/1), DERWIG 2126 (13/1), DERWIG 2126 (13/1), DERWIG 2127 (13/1), DERWIG 2127 (13/1), DERWIG 2127 (13/1), DERWIG 2128 (13/1), DERWIG 212	ELEC, ALECH, SPECIFICATIONS RN: ELECTRICAL VALUES OF 20 RY 10 990 KV 012 WF 10 990 KV 012 WF 10 910 KV TRACE DIST. 100 NL EMMORIL 191 NL EMMORIL 191 NL EMMORIL 300 NL
	3/6		ž ž
	21. 12. Yeboo		or dependent, and periodical and are pecifically noted. Hatals see tea for 115 & 138 upp for 115 & 138 upp for 115 & 138 vol 8717. -H [*] to Assembly Cat
Ý	S S S S S S S S S S S S S S S S S S S		and #6 are conduct Amor Rod. unless to Amor Rod. unless to Post individual part c of aniviga. 6. dramings. 7. shown is for Pre-D, at Dnly, add suffx ", p-BP2-1-H
	-+		NOTES 1) Item #3, #4 Compact/Bundler Applied for Broad Insulator Min 1) Note that 1 3) Note that 1 4) Stock Code 4) Stock Code 5) Stock Code 4) Stock Code 5) Stock Code 5) Stock Code 4) Stock Code 5) St
	105.	<u> </u>	043115 10-12-5014

Page 117

-

		ULTIMATE STR. (LBS)	50.000	50,000	50,000	1	1	,	,	50,000	1	1	1			N/A	N/A	N/A		DE4)	SSEMBLY	ALOG. NO.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/N	648-DE4-4	648-DE4-2	648-DE4-2	648-DE4-1	648-DE4-1	648-DE4-1	848-DE4-1	648-DE4-3	648-DE4-1	648-DE4-1 648-DE4-3				DARD	BUCKLE	IAL		CAC	IF 1
		WEIGHT	3.45	23.3	10.0	VARIES	VARIES	ARIES •	'	9.2	'	1	1		' '	5.0	1	t		SSEMBLY (I	RGY A	C NO. CAT	A				•	•			5957 C-7	5721 C-7	5721 C-7	6015 C-7	6015 C-7	6015 C-7	S015 C-7	5298 C-7	6015 C-7	5298 C-7	1	(1-WIRE)	CES, INC.	E STAN	W/ TURNE	SEMBLY DET	TO LOOK	ICAZU	24 SH.
		BASIC AATERIAL E	D.I.	COMP.	D.I.	ALUM.	ALUM.	ALUM. \	1	F.S.	1	'	1		' '	ALUM.	1	E		BOLTED AS	WP ENTE) STOCK	N	Z	N	Z	Z	z :	Z		-S8 EN00	SB ENOO	58 ENO0	-S8 ENOO	-S8 ENOO	-S8 ENOO	CS ENOU	SB ENOO	-S8 ENOO	-58 EN00		8-161-XX	SY SERVIC	ON LINE	, DEADEND	LATOR ASS	t SCA	NO.	PLOT 1:2
		TALOG MBER	HL-87	092VA10	CHL-77	TABLE	TABLE	TABLE	,	V-BC-1x6	,	,	1			/32-8	TE 3	TE 4		FOR	STRAIN CLJ	(ITEM 6	N/A	N/A	N/A	N/A	A/A	A/N	N/N	V/N	ADE-27-CE	ADE-27-	ADE-27-5	ADE-2526-	ADE-2526-	ADE-2526-	ADE-2526-	ADE-24-	ADE-2526-	ADE-2526- ADE-24-5		DEP-1K	ENTERC	NSMISSI	MER ASSY.	61 kV INSU	TAUSOL		uter gy
		N C	PIN SYC	S298	YCY	SEE	SEE	SEE		G2271	_	+	-	+	+	CR24	N	N			EMBLY	LOG. NO.	ASSIGNED	ASSIGNED	ASSIGNED	ASSIGNED	ASSIGNED	3-DE2-4	5-DE2-3	2-DE2-2	3-DE2-7	3-DE2-6	3-DE2-5	3-DE2-13	3-DE2-4	3-DE2-3	3-DE2-0	3-DE2-1	3-DE2-12	3-DE2-11 3-DE2-10		l		TRA	POL	-	STD NO.		ä
	161kV		ULT. 7/8"	161kV			. SIZE WRE													(DE2)	ASS	CATA	NOT YET	NOT YET	NOT YET	NOT YET	NOT YET	C-808	C-808		C-7648	C-7648	C-7648	C-7648	C-7648	C-7648	C-7845	C-7648	C-7648	C-7648				Pu W	ECW ED				CHK: APP
LS	RNBUCKLE,		ONG. 50K	(LB SML, 1	C ULT	SIZE WIRE	. FOR VAR.													SSEMBLY (ENTERGY	STOCK NO	32118749	32069448	32101160	32069447	32069445	32009549	32020420	21020120	EN004445	EN004446	EN000164	EN004447	EN004447	EN004447	ENDOAA48	EN004449	EN004447	EN027819 EN004449			$\left \right $	4 11X17 ECW	SN	RVB	RAB TST	8NB BVB	BY:
ATERIA	R WITH TUI	RIPTION	10-15/16" 1	LUTION, 501	5 C-C, 50K	VARIABLE	GLE TONGUE	OY	ASSEMBLY							2.)				RESSION A	ERMINAL	TEM 4)	-353-1	-253-11	-253-9	-253-7	-153-7	162HT-SS	144H1-5S	1/0011-00	-17-SS	-16-55	-15-SS	-13-SS	-13-SS	-13-SS	-12-55	-08-SS	-13-SS	-10-SS -08-SS				ABLE, RE-ORAW					
OF M.	D, POLYME	DESC	45 DEG Y	, HIGH POL	-CLEWS, 15	5 DEG, FOR	BODY, SIN	ALUM. ALL	LUDED WTH	-EYE						WITH ITEM	FILLER	JOINT		FOR COMP	RGY T	. NO.	747 600	426 600	745 600	424 600	419 600	0679 5140	00// 0130	NC 10 100	275 TF-	1276 TF-	1161 TF-	718 TF-	1083 TF-	1352 TF-	006 IF-	1278 TF-	'818 TF-	7817 TF- 7816 TF-				ID. HARDWARE T	TE ITEM 2 DESC				REMSION
BILL	R, DEADEN		HOT LINE.	E, POLYMER	ON, CLEVIS-	INECTOR, 1	IM. COMPR.	TED STRAIN	E (NOT INC	1_x6_ JAW						(SUPPLIED	LECTRICAL	LECTRICAL	STR. STR. STR.		ENTER	stock	T 32118	T 32069	T 32118	T 32069	- 32069	1 32020	T 32020	RIU2C TM	T EN004	T ENDOA	T EN000	T 32009	T EN004	EN004	T FN004	T EN004	T EN027	T EN027				SPECS & COM	DNA RING, UPDA	LERIAL	PARTS TO NAVE	EATED	
	INSULATO		T. CLEMS. I	SULATOR, DI	IK, EXTENSI	RMINAL CON	ADEND, ALL	ADEND BOL	APER SPUC	RNBUCKLE,						IG. CORONA	MPOUND, EI	MPOUND, EI	00 LB. ULT LB. ULT. 5 LB. ULT. 5 00 LB. ULT. 5		COMP. D	(ITEM 5	600-1090N	600-1080N	600-1078N	600-1070N	600-1050N	33173HT-N	N-1H10100	TURE	VES-174-N	VES-164-N	VES-153-N	VES-134-N	VES-135-N	VES-133-N	VES-115-N	VES-086-N	VES-130-N	VES-100-N				ADDED ELEC	ADDED COR	MODIFIED NJ	ADDED (1-1 ADDED ALT	DRAWING CR	
		CK NO.	015705 SK	014810 INS	015176 UN	004XX TEI	005XX DE	913XX DE	5029 JUN	015815 TU	1	1 1	1	1 1		20683 RIN	DTE 3 CO	DTE 4 CO		COND.	DIA.	(N)	1.504 5	1.345 5	1.294 5	1.198 5	0.990	+0c-1	1.040	1 000	1.602	1.504	1.345	1.213	1.196	1.165	0001	0.720	1.165	0.928	-			12-31-14	05-23-11	10-14-04	00-00-00		DATE:
		DE4 STC	ENC -	-	1 EN	- LSS	- LSG	-	1	-	,	,	1	1		ENC	N 1	0 V	ADE-2526 ADE-27-9 ADE-24-9 ADE-27CE			¥	APWING	BITTERN	BEAUMONT	CARDINAL	ROSBEAK	APWING	ADDINIAL	AVINCO	CHUKAR	APWING	BITTERN	ORTOLAN	ARDINAL	AL	AMINGO	NNET					Ŀ	5	-	2	- 1	0	NO.
		QUA ITEM DE2	-	2	۲ ۲	+	ۍ ۲	1 9		۰- 80	1 6	10	1 E	12 -	2 1	1 1	16 0/1	17 0.5	•			CONDUCTO	0 (56/1), L	0 (33/1), E	5 (33/1), E	0 (33/1), 0	(15/1), GR	0 (45/7), 1	(1/04) (L/1/)	D (1/40)	0 (84/19).	0 (45/7) 1	0 (45/7), E	5 (45/7). ((54/7), C	(45/7), R.	(1/07) E	(26/7), U	5 (24/13)	(15/7)									
				_											NOTE 2)								1949.	₹ 1582.	0 1428.	¥C(1222	821.2	1590.	12/21	0.40% ¥	1780.	1590.	1272.	SC 1033.	₹ 954.0	954.0	666.6	336.4	g 1024.	A 649.5 A 395.2									
/8" (CLOSED)	/8" (OPEN) 15" 92" 92"		To BUNNINNINNINNINNINNINNINNINNI		*	V8" BOLT COMPRESSION ASSEMBLY			(A)(A)	8			© ©					BOLTED_ASSEMBLY	ALTERNATE PARTS NOT PERMITED FOR ACSS & A ACCC	(SEE NOTE 2)	D JUMPER CONNECTION	(NOT INCL. WITH ASSY.)		OTES		tern #4, #5, #5 and #7 are conductor dependent are selected for each project.	Designer may substitute #6 and #7 for items #1. #4 and #5.	strain clamp shall include socket eye for a 52-11 ball.	ise of boilted clamps will require the use of non-tension	umper spices.	ACSR & ACAR terminals and compression DE fittings are supplied tra-filled (zero quantity real). Make up as needed with FN005687.	AFC10T). ACSS compression hardware requires High Temp. Compound	22053032 (AFCHTIOT). ACCC compression hardware requires High	iemp. Compound 32119913 (PENHT-1LB).	NUDR & NUMM terminals require normal temperature joint compound N019252 (CTBB). ACSS & ACCC terminals require high temperature	oint compound 32121109 (ALNOX107).	for hardware only, add suffix "-H" to assembly catalog number.				MIN ELEC. MECH. SPECIFICATIONS	MIN. ELECTRICAL VALUES	60 HZ DRY FO 690 KV	00 HZ WEI FU 025 KV CIFIO4 1014 KV	GFO- 1275 KV	DRY ARC DIST. 75 IN.	LEAKAGE DIST. 180 IN.	MIN. MECHANICAL STRENGTH	
20 5,	26	_		ŧ,	/		-																	2		2	(2)	1		1	(s				î,		5)												
			_	_	_	_	_	_	_	_		_	_	_	_		_						_	_	_	_	_	_	_	_		_	_	_	_	_	1	102-	-21-	u			2111	<i>8.</i> 0					

-

MEGHT ULTMATE EA.(LBS)STERGTH (LBS) 2.2 35,000 80.2 SEE APP. CURVE	VARIES 25,000 U.N.O. VARIES 25,000 U.N.O. 5,00 U.N.O. 5,00 U.N.O.	CONDUCTORF (JLPB) TERGY ASSEMBLY OCK NO. CATALOG. NO. M/A N/A <	(02782,4 C.7648-J.PB-4 (02782,3 C.7648-J.PB-3 (02782,3 C.7648-J.PB-2	-161-2X ERVICES, INC. LINE STANDARD 2/2" JUMPER LINE POST 8 ASSEMBLY DETAL 3. ASSEMBLY DETAL
CATALOG BASIC NUMBER MATERIAL YCB-65A F.S. H291076VA04 COMP.	SEE TABLE ALUM. SEE TABLE AL/DL. UP25CR6 AL/DL. UP25CR6 ALUM.	FOR BUNDLED BUNDLED BUNDLED (ITEW 5) (ITEW 5) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NBLS-12-77-5 [D) NBLS-12-66-5 [D) NBLS-12-66-5 [D) NBLS-12-66-5 [D) NBLS-12-66-5 [D) VBLS-12-66-5 [D) VBLS-12-66-5 [D) VBLS-12-26-5 [D) VBLS-12-22-5 [D) VBLS-12-22-5 [D) VBLS-12-22-5 [D) VBLS-12-22-5 [D)	ALP- ALP- ENTERCY SI FRANSMISSION POLYMER ASSV. 2 1 161 kV INSULATIO
ALS Post assy for 161 kv MA	E CONDUCTOR SIZE E SIZE, w/SOCKET EYE ZE MIRE MIRE ULTIMATE STRENGTH	1065 (JLP) 1065 (JLP) 0 CATALOG. NO. 0 CATALOG. NO. 0 NOT YET ASSIGNED 1001 YET ASSIGNED 10101 YET A	5 C.7648-J.D-4 8 C.7648-J.D-3 9 C.7648-J.D-3 10 C.7648-J.D-3 11 C.7648-J.D-3 12 C.7648-J.D-3 13 C.7648-J.D-3 14 C.7648-J.D-3 15 C.7648-J.D-3 16 C.7648-J.D-3 17 C.7648-J.D-1 18 C.7648-J.D-1 19 C.7648-J.D-1 10 C.7648-J.D-1 11 C.7648-J.D-1 12 C.7648-J.D-1 13 C.7648-J.D-1 14 C.7648-J.D-1 15 C.7648-J.D-1 16 C.7648-J.D-1 17 C.7648-J.D-1 18 C.7648-J.D-1 19 C.7648-J.D-1 10 C.7648-J.D-1 11 C.7648-J.D-1	0R TLS=01155E & TLS=0155E & TLS=015E
POLYMER JUMPER LINE I DESCRIPTION DESCRIPTION DESCRIPTION	CRMED, ALUMINUM, VARIABLE W 4. ALUMINUM, VARIABLE W BPLED WTH ITDM 2.) PPLED WTH ITDM 2.) SPLED WTH ITDM 2.)	FOR SINGLE CONDUC CLAMP ENTERY CLAMP ENTERY CLAMP ENTERY CLAMP STOCK IN CLOTISE IN 2006992 CLS-01195E IN 2006992 CLS-01195E IN 2006992 CLS-01195E IN 2006992 CLS-01195E 2006992 CLS-01195E 2006992 CLS-01195E 2006992 CLS-01195E 2006992 CLS-01195E 2006971 (15-20-20-5 3202071) (15-20-20-5 3202071) (15-20-20-5 3202071) (15-20-20-5 3202071) (15-20-20-5 3202071) (15-20-20-5 3202071)	LS-7-5 EN00038 LS-6-5 EN00018 LS-2-5 EN00018 LS-2-5 EN00018 LS-2-5 EN00038 LS-2-5 EN00036	 ULTIMATE STRENGTH F CODO HARRANG TARE RE-DOM
INSULATOR, 2-1/2" NO 175 BALL CLEVIS, 45 DE 117 INSULATOR, 2-1/2"	XXX ROD, ARMOR, PREF BXX CHALP, SUSENSION 707 RING, CORONA (SUF RING, CORONA (SUF MHEN USING ACAR & AC	DIA. TAKEOFF DIA. ANGLE ANGLE (N) (DEG) 	2.504 30 (1.145 30 (1.196 30 (1.168 30 (1.000 30 (1.000 30 (1.05 30 (1.65 30 (1.65 30 (1.65 30 (1.65 30 (1.65 30 (1.65 30) (1.65 30 (1.65 30) (1.65 30) (1.6	
QUANTITY GUANTITY ITEM JLP JLPB STOCK 1 1 1 50004 2 1 1 32094	3 * 1 * 2 * L5900 4 1 - 1 - 15900 6 - 1 - 32093 6 - 32093 7 + 15800	ARMOR ROD ENTERCY (ITEM 3) STK. NO. NOL. w/ ITEM 4 NOL. w/ ITEM 4 NOL. w/ ITEM 4 NOL. w/ ITEM 4 A1350-45-55 32117835 A1325-45-55 32117835 A1222-45-55 32117825 A536-26-45 32117825		
		CONDUCTOR 1949 (55/1), LAPWING 1952 (33/1), BITTENN 1222 (33/1), CARDINAL 1222 (33/1), CARDINAL 1222 (13/1), CARDINAL 1222 (45/7), LAPWING AF 1222 (45/7), LAPWING AF 1222 (45/7), CARDINAL 666.6 (24/7), CARDINAL 1780 (43/19), CUUKAR	1590 (45.77). LPPWIG 1272 (45.77). BITTERN 258 (45.77). BITTERN 295 (45.77). DRMC 295 (55.77). CARDINAL 795 (55.77). FAMINGO 354 (54.77). FAMINGO 354 (54.77). FAMINGO 354 (54.77). FAMINGO 254.73 24.	IN ELEC./AECH. SPECIFICATION MIN. ELECTRICAL VALUES 00 HZ DRY FO 590 KV 01 HZ WET FO 590 KV 05 FO- 1020 KV 05 FO- 1020 KV 1020 KV MIN. LEAKACE DIST. MIN. WECHWICAL STRENOTH MICL.
			THE CONDUCTOR	ore conductor dependent. are conductor dependent. Selected for each project and are selected for each project and are sublators are used for 115 kV applications. add suffix "-H" to Assembly Cat. No. H

	BILL OF MATERIALS BILL OF MATERIALS INSULATOR UNE SUSPENSION HEAVY POLYMER WITH L INSULATOR UNE SUSPENSION HEAVY POLYMER WITH L Description	QUANTITY		1 1 1 1 REVENSION. CLEWS. 15" SOK ULT VEYS						1 LS915XX YONE, VERICAL DOUBLE BUNDLE, VARABLE SIZE MRE	(そう)		1 1 0 0					ARNOR DIA TAKEOFF FOR SINCE CONDUCTORS (SHL)	ROD ENTERCY W/ARM, ANGLE CLAMP ENTERCY ACCURATE CLAMP ENTERCY ACCURATE UND	Conductor (TEM a) STR. No. [ROD (N) (DEG) (TEM 4) STOCK NO. CATALOG. NO. (TEM	1949 (36 /1). LAPWING NGL w/ TEM 4 - TLS-011952 IN 32069697 NOT YET ASSORED N/A	SDE WEW (2) 25 1552 (33.1), BITTEN NICL w/ ITEU 4 ITS-011552 11 2006893 NOT YET ASSIGNED N/A	0 1428 (33/1) REALMONT INC. #/ THM 4 AGS-5138 32082057 INCT YET ASSORED N/A	8 1222 (33/1), CARDINAL NCL w/ TEM 4 TLS-01115E 32069988 NOT YET ASSORED N/A	4 827 (19/1), GROSBEAK INC. w/ ITEM 4 I.SCIOSSE 32068975 INCI YET ASSORD N/A	ELINITIER FORMITIER FOR FORMITIER FOR FORMITIER FOR FOR FOR FOR FOR FOR FOR FOR FOR FO	2015 15 ACT-214-20-20-38 22020719 C-8081-523-3 168AC5-16-21	2 954 (54/7), CARDINAL AR-0143 EN000383 1.816 15 ACFS-186-20-20-58 32020717 C-8083-553-2 VBACFS-18-18	66.6.5 (24/7) FLAMINGO AR-0137 EN000384 1.620 15 ACFS-175-20-20-58 32020715 C-8083-535-1 VEACFS-18-175	17580 (84/19), CHUKAR AR-D165 E10000382 2.474 30 ASC-11-58 EN027804 C-7548-SS6 VBLS-12-111	150 (42/7), LAPWIG AR-1015 15/000381 2.276 30 ASC-11-58 EN027804 (C-7648-552-5 V815-22-11-11) 0.000 (12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	11-21-25184 P=-26-26-27 PARALAN BE-TT=-26A UC CVUZ GENUNDAL MATTING ALCONTRACTOR PARALAN AND A CVUZ ALCONTRACTOR ALCONT	251 LOSS / YZ/J/C ANDIMAL MAR-0143 [DNOD333] 1.1816 30 LS-9-36 ENCZ/R01 C-7646-55L-3 RMLS-1Z-9 1954 (54/7), CARDIMAL MA-0143 [DNOD333] 1.1816 30 LS-9-38 ENCZ/R01 C-7646-55L-3 RMLS-1Z-9	354 (45/7), RAIL AR-0143 EN000383 1.785 30 LS-8-88 EN027801 C-7648-53L-3 WEL-12-9	795 (26/7), DRAKE AR-0141 EN004005 1.728 30 LS-8-56 EN027801 C-7648-SSL-7 VBLS-12-8	666.6 (24/7), FLAMINGO AR-0137 EN000384 1.620 30 LS-8-58 EN027801 C-7648-SSL-2 VBLS-12-8	3.54.4 (26/7), LINNET AR-1020 (EN000385) 1:128 30 LS-98 (1927/802) C-7648552-1 YGS-22-9 0-004.6 (26/7), LINNET AR-10200385 1:128 30 LS-0-88 (1927/802) C-7648552-1 YGS-22-9 0-004.6 (26/7), LINNET AR-10200385 1:128 30 LS-0-88 (1927/802) C-7648552-1 YGS-22-9 (1927/802) C-7648552-1 YGS-22-1 Y	<u>Γ Ινάζω 247/3</u> Ακευτίνη Ιτνούωσο 1.7.09 - 30 - <u>12–0–56</u> Εκυτρίου Ευτονούου το το 12–20 - 30 - Εμπτρίου Ευτονούου το	₹ <u>396,2,15/7</u> <u>AR-0130</u> [EN000366 1,1;29 30 (2-0-50) EN020386 2,252-1 W(2-2-2-1) W(2-2-2-1) W(2-2-2-1) W(2-2-2-2) W(2-2-2) W(2-2-2-2) W(2-2-2	•• ULTIMATE STRENGTH FOR TLS-OTISSE & TLS-OT	NOTES NOTES	Them B and P are available for and man the ELECTRONG VALUES	cumps/mutes une seercus in event proper unu vere <u>COPTLDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDFDF</u>	For hardware only add suffix "H" to assembly catalog number CFC++ 1275 kv	EX: C-7648-SSLB-1-H DITECTION 1275 KV	For ACCC conductors, replace socket eye supplied with clamp in exume usin - 1 - 2 M.	with socket eye intended for 52–11 bdl. EN015435 shall be ILL-Americ using Team Price Unit and the Price Uni	substituted when using ACCC GROSELX and ACCC BEAUMONT. ULT. 50,000 LBC. TRANS	2022 312415 and be aubstituted when using ACCC CARDINA, Carrier and ACC CARDINA, CARDINA, CARDINA, CARDINA, CARDINA, CARDINA, CARDINA, CARDINA, AC	3 12-31-14 ADED ELES 9015 a COLD BALL RE-DOWN TITY EX # 10	4 5-23-11 ALORO CORMA RAG, UPANTED FEW 2 CESC. Cav CCM COM COM A COLOR	
--	---	----------	--	--	--	--	--	--	--	---	------	--	------------------	--	--	--	--	--	--	---	---	--	---	--	--	--	---	---	--	--	---	--	---	---	---	--	--	---	---	--	-------------	---	---	---	---------------------------------------	--	--	---	--	--	--	--

-

Appendix 2 – HV Transmission Page 124

Appendix 2 – HV Transmission Page 126

Appendix 2 – TV Transmission Page 130

Attachment 1: Applicable Standard Framing and Assembly Drawings

Appendix 2 – HV Transmission Page 132

Appendix 2 – HV Transmission Page 133

Appendix 2 – HV Transmission Page 135

Page 136

Attachment 1: Applicable Standard Framing and Assembly Drawings

Appendix 2 – HV Transmission Page 137

Appendix 2 – HV Transmission Page 138

OST INSULATOR S ANSI C29 9-1963 UNEI C20 4-1963 UNEI C20 4-1963 NO 100	24/4 64/Lm 312/000 hos-An 623 64/L 1312/000 hos-An 623 64/L 1400 hos-An 140 mar 140 mar 140 mar 101/10 M.m 20000 hist-poweth	1001 men 102 - 102	200 mm 6 2319 200 mm 7 178 mm 7 1000 201 mm 7 1000 201 mm 2 201 mm 2 201 201 mm 2 201 pounds 201 mm 200 pounds 201 mm 200 pounds 201 mm 109 201 201 mm 109 201 mm 100 201 201 mm 100 201 m	мином. [27.6] / 6.5 <u>6.7 де</u> ми с. тими: нов. 1. 1.04684 <u>8</u>
COMPOSITE POLYMER P TOLENANCES OF DIMENSIONS 1.1- APPLICATION 1.2- RATED VOLTAGE	INSULATOR MECHANICAL SPECIFICATION 2.1- EENDING WITHSTAND 2.1- EENDING WITHSTAND MOMENTING EQUIVALENT RENDONG WITHSTAND LOND (BANJ) 2.1- MAXIMAN DETLETINGN 2.1-D MAXIMAN DETLETINGN UNCER RENDONG LOND (MML) 2.2 TORSIONAL STRENGTH	DIMENSIONS 3.1- INSULATOR 3.1- OCEULT HEIGHT OF ABULATOR 3.1- OCEULT HEIGHT OF ABULATOR TOLETONICE 3 3.1- MAX EXTERNUL DUMETER OF SHEEDS 3.1- MAX EXTERNUL DUMETER OF SHEEDS	32-HIGH VOLTAGE FITTING (OR TOP) 32-HIGH VOLTAGE FITTING (OR TOP) 32-HIGH VOLTAGE FITTING (OR DOP) 32-HOUT CREATER 13-LOW VOLTAGE FITTING (OR BOTTOM) 13-LOW VOLTAGE FITTING 13-LOW VOLTAGE FITTING (OR BOTTOM) 13-LOW VOLTAGE FITTING 13-LOW VOLTAGE FITTING (OR BOTTOM) 13-LOW VOLTAGE FITTING 13-LOW	COMMERCIAL DRAWING T-04684 - ENTERGY STOCK CODE 0032034
4 NEW YOLTAGE SAR	CITED STATING CONCOUNTING CONCOUNTING E 200 CONCOUNTING S0 500 D02 S0 500 D02 S0 500 D02 S1 5 S1 5		SILICONE SHEDS SILICONE SHEDS BOTTONETTING 60 713 ALUMINUM BOTTONE SHEDS	

Appendix 2 – HV Transmission Page 140

Appendix 2 – HV Transmission Page 141

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc. Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc. All Rights Reserved

Vang Details for Steel Poles

HEAVY-DUTY 4-HOLE VANG

Primary use:

Support shield wire deadend assemblies Support conductor deadend assemblies Support conductor deadend down guys Support conductor bisector down guys Support shield wire deadend down guys Support shield wire bisector down guys All conductor and shield wire vangs on structures with running angle insulators (E, F and G)

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc. Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc. All Rights Reserved

HEAVY-DUTY 4-HOLE VANG FOR TRIPLE BUNDLE SINGLE POINT DEAD ENDS

Primary use:

Support 500kv conductor dead end assemblies where guys will be at the same elevation as the conductors and when guys are not specified.

HEAVY-DUTY 2-HOLE VANG FOR TRIPLE BUNDLE SINGLE POINT DEAD ENDS

Primary use:

Support 500kv conductor dead end assemblies and guys where guys are specified and will attach at locations below the conductors. Do not install guy vangs on unguyed structures with this type of vang unless specified by Entergy.

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc. Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc. All Rights Reserved

NEMA Pad Details for Steel Poles or Caissons

SMALL NEMA 2-HOLE PAD

LARGE NEMA 2-HOLE PAD

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc. Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc. All Rights Reserved

TDS021A1, Step and Bracket Details, represents the Entergy specifications for drop-in steps.

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc., Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc

Climbing Details

TDS106A1, Step Bolt Details, represents the Entergy specifications for pole steps.

This document is the property of Entergy Services, Inc. and contains confidential and proprietary information owned by Entergy Services, Inc. Any copying, use, or disclosure of this information without the written permission of Entergy Services, Inc. is strictly prohibited. This material is protected under trade secret and unfair competition laws and the expression of the information contained herein is protected under Federal copyright laws. Violations thereof may result in criminal penalties and fines.

Copyright Unpublished Work Entergy Services, Inc.

Attachment 1: Applicable Standard Framing and Assembly Drawings

ATTACHMENT 2 NESC AND ENTERGY CLEARANCE REQUIREMENTS

Basic NESC Clearance Requirements

Rule 230A2, Emergency Vertical Clearances to Ground										
69 115 138 161 230 345 500										
Truck Accessible	16.2	17.1	17.6	18.0	19.4	21.7	24.9			
Pedestrian Only	Pedestrian Only 9.7 10.6 11.1 11.5 12.9 15.2 18.4									

ULE 232B&C - Vertical Clearance over Ground, Roadway, Rail or Water Surfaces											
	69	115	138	161	230	345	500				
Railroad	27.16	28.09	28.56	29.02	30.41	32.74	35.87				
Roads	19.16	20.09	20.56	21.02	22.41	24.74	27.87				
Other Area Traversed by Vehicles	19.16	20.09	20.56	21.02	22.41	24.74	27.87				
Accessible to Pedestrian Traffic Only	15.16	16.09	16.56	17.02	18.41	20.74	23.87				

RULE 233C - Vertical	Clearance	over Anoth	er Wire Wit	h or Withou	It Wind		
	69	115	138	161	230	345	500
0	2.66	3.59	4.06	4.52	5.91	8.24	11.85
13.8	2.93	3.86	4.32	4.79	6.18	8.50	12.12
34.5	3.32	4.25	4.72	5.18	6.58	8.90	12.52
69	4.06	4.98	5.45	5.91	7.31	9.63	13.25
115	4.98	5.91	6.38	6.84	8.24	10.56	14.18
138	5.45	6.38	6.84	7.31	8.70	11.03	14.64
161	5.91	6.84	7.31	7.77	9.17	11.49	15.10
230	7.31	8.24	8.70	9.17	10.56	12.89	16.50
345	9.63	10.56	11.03	11.49	12.89	15.21	18.82
500	13.25	14.18	14.64	15.10	16.50	18.82	22.44

	69	115	138	161	230	345	500
			100			0.0	000
Lighting Supports	5.23	6.16	6.62	7.09	8.48	10.80	13.94
Traffic Signal Supports	5.23	6.16	6.62	7.09	8.48	10.80	13.94
Supporting Structures of Other							
Lines	5.23	6.16	6.62	7.09	8.48	10.80	13.94
Intermediate Poles in Skip-Span							
Construction	5.23	6.16	6.62	7.09	8.48	10.80	13.94
Building Roofs not Accessible to							
Pedestrians	13.16	14.09	14.56	15.02	16.41	18.74	21.87
Building Areas Accessible to							
Pedestrians	14.16	15.09	15.56	16.02	17.41	19.74	22.87

Building Areas Accessible to							
Vehicles (not Trucks)	14.16	15.09	15.56	16.02	17.41	19.74	22.87
Building Areas Accessible to							
Trucks	19.16	20.09	20.56	21.02	22.41	24.74	27.87
Signs, Chimneys, Billboards,							
Radio and TV antennas,							
Flagpoles and Flags, Banners,							
Tanks with Catwalks	14.16	15.09	15.56	16.02	17.41	19.74	22.87
Signs, Chimneys, Billboards,							
Radio and TV antennas,							
Flagpoles and Flags, Banners,							
Tanks without Catwalks	8.66	9.59	10.06	10.52	11.91	14.24	17.37

RULE 234B, C & G - Horizontal (Clearance	to Variou	s Structu	res with N	o Wind		
	69	115	138	161	230	345	500
Lighting Supports	5.00	5.66	6.12	6.59	7.98	10.30	13.44
Traffic Signal Supports	5.00	5.66	6.12	6.59	7.98	10.30	13.44
Supporting Structures of Other							
Lines	5.00	5.66	6.12	6.59	7.98	10.30	13.44
Intermediate Poles in Skip Span							
Construction	5.00	5.66	6.12	6.59	7.98	10.30	13.44
Buildings	8.16	9.09	9.56	10.02	11.41	13.74	16.87
Signs, Chimneys, Billboards,	8.16	9.09	9.56	10.02	11.41	13.74	16.87
Radio and TV Antennas,							
Flagpoles & Flags	8.16	9.09	9.56	10.02	11.41	13.74	16.87
Banners, Tanks	8.16	9.09	9.56	10.02	11.41	13.74	16.87

RULE 234B, C & G - Horizontal Clearance to Various Structures with Wind									
69 115 138 161 230 345 500									

Attachment 2: NESC and Entergy Clearance Requirements

Lighting Supports	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Traffic Signal Supports	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Supporting Structures of Other							
Lines	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Intermediate Poles in Skip Span							
Construction	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Buildings	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Signs, Chimneys, Billboards,	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Radio and TV Antennas,							
Flagpoles & Flags	5.16	6.09	6.56	7.02	8.41	10.74	13.87
Banners, Tanks	5.16	6.09	6.56	7.02	8.41	10.74	13.87

RULE 235C2 Structures	ULE 235C2b1 - Vertical Clearance Between Wires Supported at Different Levels on the Same Structures												
	69	115	138	161	230	345	500						
0	2.03	2.58	3.02	3.47	4.79	7.01	9.99						
13.8	2.03	2.85	3.29	3.73	5.06	7.27	10.25						
34.5	2.36	3.24	3.69	4.13	5.46	7.67	10.65						
69	3.02	3.91	4.35	4.79	6.12	8.33	11.32						
115	3.91	4.79	5.24	5.68	7.01	9.22	12.20						
138	4.35	5.24	5.68	6.12	7.45	9.66	12.64						
161	4.79	5.68	6.12	6.56	7.89	10.10	13.09						
230	6.12	7.01	7.45	7.89	9.22	11.43	14.42						
345	8.33	9.22	9.66	10.10	11.43	13.65	16.63						
500	11.32	12.20	12.64	13.09	14.42	16.63	19.61						

RULE 235B	- Horizontal	Clearance B	etween Wire	s Supported	on the Same	e Structure	
	69	115	138	161	230	345	500
0	2.08	2.96	3.41	3.85	5.18	7.39	10.37
13.8	2.34	3.23	3.67	4.11	5.44	7.66	10.64
34.5	2.74	3.63	4.07	4.51	5.84	8.05	11.04
69	3.41	4.29	4.73	5.18	6.50	8.72	11.70
115	4.29	5.18	5.62	6.06	7.39	9.60	12.59
138	4.73	5.62	6.06	6.50	7.83	10.05	13.03
161	5.18	6.06	6.50	6.95	8.27	10.49	13.47
230	6.50	7.39	7.83	8.27	9.60	11.82	14.80
345	8.72	9.60	10.05	10.49	11.82	14.03	17.01
500	11.70	12.59	13.03	13.47	14.80	17.01	20.00

RULE 233B [,]	ULE 233B1 - Horizontal Clearance to Other Wires (With or without Wind)												
	69	115	138	161	230	345	500						
0	5.66	6.59	7.06	7.52	8.91	11.24	14.37						
13.8	5.94	6.87	7.33	7.80	9.19	11.52	14.65						
34.5	6.36	7.29	7.75	8.22	9.61	11.94	15.07						
69	7.06	7.98	8.45	8.91	10.31	12.63	15.76						
115	7.98	8.91	9.38	9.84	11.24	13.56	16.69						
138	8.45	9.38	9.84	10.31	11.70	14.03	17.16						
161	8.91	9.84	10.31	10.77	12.17	14.49	17.62						
230	10.31	11.24	11.70	12.17	13.56	15.89	19.02						
345	12.63	13.56	14.03	14.49	15.89	18.21	21.34						

500	15.76	16.69	17.16	17.62	19.02	21.34	24.47

Vertical Clearance Requirements; NESC 2012 & Entergy Design Clearance

	69	69 kV ⁽¹⁾		115/138/161 kV ⁽¹⁾		230 kV ⁽¹⁾		345 kV ⁽¹⁾		500 kV ⁽¹⁾ (3)	
	NESC ⁽²⁾	ETR	NESC ⁽²⁾	ETR	NESC ⁽²⁾	ETR	NESC ⁽²⁾	ETR	NESC ⁽²⁾	ETR	
	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	@ Max. Sag(ft.)	
Railroads	27.16	33.00	29.02	35.00	30.41	37.00	32.74	41.00	35.87	48.00	
Roads	19.16	28.00	21.02	30.00	22.41	32.00	24.74	33.00	27.87	40.00	
Other Land Traversed by any kind of Vehicle	19.16	24.00	21.02	26.00	22.41	28.00	24.74	33.00	27.87	40.00	
Cultivated Farmland	19.16	27.00	21.02	29.00	22.41	31.00	24.74	33.00	27.87	40.00	
Land accessible to pedestrians only	15.16	24.00	17.02	26.00	18.41	28.00	20.74	29.00	23.87	36.00	
Water Areas Suita	ble for s	sailboats	S:			1		1		1	
Less than 20 acres	21.16	24.00	23.02	26.00	24.41	28.00	26.74	35.00	29.87	42.00	
20-200 acres	29.16	32.00	31.02	34.00	32.41	36.00	34.74	43.00	37.87	50.00	
200-2000 acres	35.16	37.00	37.02	40.00	38.41	42.00	40.74	49.00	43.87	56.00	
Over 2000 acres	41.16	44.00	43.02	46.00	44.41	48.00	46.74	55.00	49.87	62.00	
Sailboat launch si	ites adja	cent to	water: A	dd 5'		I		1		I	
Less than 20 acres	26.16	29.00	28.02	31.00	29.41	33.00	31.74	40.00	34.87	47.00	
20-200 acres	34.16	37.00	36.02	39.00	37.41	41.00	39.74	48.00	42.87	53.00	

200-2000 acres	40.16	43.00	42.02	45.00	43.41	47.00	45.74	54.00	48.87	61.00
Over 2000 acres	46.16	49.00	48.02	51.00	49.41	53.00	51.74	60.00	54.87	67.00
Other supply lines 34.5kV and										
under	2.66	8.00	4.52	10.00	5.91	15.00	8.24	17.00	11.85	23.00
Other supply lines	5:	1						I		I
69 kV	4.06	10.00	5.91	11.00	7.31	16.00	9.63	18.00	13.25	20.00
115/138/161 kV	5.91	11.00	7.77	13.00	9.17	18.00	11.49	20.00	15.10	22.00
230 kV	7.31	16.00	9.17	18.00	10.56	20.00	12.89	22.00	16.50	24.00
345 kV	9.63	18.00	11.49	20.00	12.89	22.00	15.21	24.00	18.82	26.00
500 kV	13.25	20.00	15.10	22.00	16.50	24.00	18.82	26.00	22.44	28.00
Guys, Neutrals										
and shield wires	2.66	8.00	4.52	10.00	5.91	15.00	8.24	17.00	11.85	19.00
Communications lines	5.66	10.00	7.52	12.00	8.91	15.00	11.24	17.00	14.37	19.00

Notes:

(1) Conductor Temperature: 100°C for ACSR, see table 7.1(b) for other conductor types

(2) NESC Vertical Clearance = Basic Clearance + Voltage Adder; Voltage Adder = 0.4"/kV in excess of 22kV; refer to 2012 NESC Clearance Calculations.

(3) For 500 kV, the NESC clearance is approximately equal to the clearance requirements derived from a Switching Surge factor of 2.6.

ATTACHMENT 3 QUICK ESTIMATING CORONA LOSS CURVES

ATTACHMENT 4 EXAMPLE ROW

Appendix 2 – HV Transmission Page 162

ATTACHMENT 5 APPROVED VENDOR LIST

				Lead Time	Date last updated: August 22
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
A0102	Arresters	Arrester, Surge		(Cooper), Siemens, Hitachi Energy	Series 2000
M0202	Battery	Batteries	CC	(Enersys)	Exponential Power
M0201	Battery	Batteries	EC	(Enersys)	Exponential Power
M0301	Battery	Battery Charger AT-10		(Hindle)	Exponential Power
M0301	Battery	Battery Charger ATEVO		(Hindle)	Exponential Power
		Battery Fiberglass Enclosure			
	Battery	with A/C		(Exponential)	Exponential Power
M0303	Battery	Battery Rack		(Enersys)	Exponential Power
	Bolts	Bolts Anchor		Valmont, Threaded Fasteners	
		Bolts Anchor cage for			
	Bolts	Substation Steel		Valmont, Threaded Fasteners (size limit)	
D0203	Breaker	Breaker, EHV	345/500kV (Live Tank)	Hitachi Energy	
00002	Breaker	Prosker EHV	245/500kW (Dead Tank)	(MEDDI) Hitashi Energy	MERDI
00203	Dreaker	Breaker, LIV	COluc	(NEPPI), hitachi Energy	Rieman
00202	Dreaker	Dreaker, nv	darlay and	(Siemens), WEPPI, Hitachi Energy	Siemens
D0202	Dreaker	Dreaker, HV	115KV - 40KA	(Siemens), MEPPI, Hitachi Energy	Siemens
00202	Breaker	Breaker, HV	115KV - 63KA	(Siemens), MEPPI, Hitachi Energy	Siemens
D0202	Breaker	Breaker, HV	161kV - 40kA	(Siemens), MEPPI, Hitachi Energy	Siemens
D0202	Breaker	Breaker, HV	161kV - 63kA	(Siemens), MEPPI, Hitachi Energy	Siemens
D0202	Breaker	Breaker, HV	245kV	(Siemens), MEPPI, Hitachi Energy	Siemens
D0202	Breaker	Brekaer, HV	245KV, 80ka	(Siemens), MEPPI, Hitachi Energy	Siemens
D0201	Breaker	Breaker, MV	15 kV- 27kV	(ABB INC.) MEPPI	ABB Inc. Approval drawings 5 wks from issue date of po
D0201	Breaker	Breaker, MV	34.5 kV	(ABB INC.)	ABB Inc. Approval drawings 5 wks from issue date of po
B0101	Bus	Bus, Aluminum Pipe		(Three D Metals) AFL	Three D Metals
	terreturn terreturn	Control Cable -Shielded and			
B0401	Cable, Control	Non-Shielded		(Southwire), Priority	Southwire
A0303	Capacitor Bank	Capacitor Banks, Series		Cooper, Hitachi Energy	Cooper Approval drawings 4 wks from issue date of po
A0301	Capacitor Bank	Capacitor Banks, Shunt		Cooper, GE, Hitachi Energy	Cooper Approval drawings 4 wks from issue date of po
	Capacitor Bank	Capacitor Cans	Capacitor Cans	Cooper, GE, Hitachi Energy	
	Consultation	Constitution	24 Flat and balance	(Countrary Chatran)	Preferred Sales Approval drawings 4-8 wks from issue date
	Capswitcher	Capswitcher	34.5KV and below	(Southern States)	of po
	Capswitcher	Capswitcher	245kV - 362kV	(Southern States)	Preferred Sales Approval drawings 4-6 wks from issue date of po
	Constitution	Committee of	11/ IV and about	(Couthorn Ototoo)	Preferred Sales Approval drawings 4-8 wks from issue date
	Capswitcher	Capswitcher	TISKV and above	(Southern States)	or po
	Capswitcher	Capswitcher	69kV	(Southern States)	of po
1	Carrier	Power line Carrier	UPLC	Pulsar	Ametek
N0201	CCVT	CCVT	69kV - 500kV	(Ritz), GE, Trench, Hitachi Energy	Aertker Approval drawings 2 wks from issue date of po
				and the second sublement of the second states and the	

				Lead Time	Date last updated: August 22,
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
SD1801	Circuit Switcher	Circuit Switcher	Series 2000	(S&C)	Curtis Stout Approval drawings 3 wks from issue date of po
SD1802	Circuit Switcher	Circuit Switcher	Mark V	(58C)	Curtis Stout, Approval drawings 3 was from issue date of po
	Conductor	Cable, Aluminum	ACSS, ACSR	(General Cable) - Southwire	Aertker co
		Cable, Copper (Not Control			
	Conductor	cable)		Copperweld /Alcoa	Stuart Irby
	Conductor	Cable, Fiber	OPT-GW	AFL	Preferred Sales
	Conductor	Cable, Fiber	ADSS	AFL	Preferred Sales
	Conduit	Conduit & Accessories		Cantex Carlon	Stuart Irby
	Connector	Connectors line	ACSS	AFL	Preferred Sales
		Connectors line (Fiber			
	Connector	OPGW, ACSR)	Fiber, OPGW, ACSR	AFL	Preferred Sales
		Connectors Trans Line -			
	Connector	Insulator Assemblies		(Maclean Power Svs)	Preferred Sales
		Connectors/Fittings -			
	Connectors/Fittings	Substation		Any Approved Manufacturer	Stuart Irby
0403	Control House	Control House	Drop-In (turnkey)	VFP	VFP
0403	Control House	Control House		(Modular Connections), AZZ Inc., Trachte, VEP	Modular Connections
N0301	CT	CT	15kV - 34.5kV	ABB Inc. Ritz	
N0301	ст	ст	69ky - 138ky	GE, Trench, Hitachi Energy, Ritz	
N0301	СТ	CT	161kV -230kV	GE Trench Hitachi Energy Ritz	
N0301	CT	CT	345ky - 500kV	GE Trench Hitachi Energy	
	CT	CT	Slipover only	ITEC, ABB Inc., Meramec	ITEC Approval drawings 2-3 wks from issue date of po
	DFR	DFR (Digital Fault Recorder)		MehtaTech	Louisiana, Mississippi, Arkansas only
	DFR	DFR (Digital Fault Recorder)		Qualitrol	Texas only
		Conductor Fittings			
	Fittings	Compression		AFL, Sefcor, Anderson, Hubell	Stuart Irby
		Ground Rods, Clamps, &			
	Grounds Rods Clamps	Anodes		Any Approved Manufacturer	Stuart Irby
	Helical Piles	Foundation Piling		Hubbell, Cyntech	
A0504	Insulators	Insulator, Line, Polymer		(Maclean Power Sys)	Preferred Sales
A0504	Insulators	Insulator, Line, Polymer	(Polymer Insulator Only)	(Maclean Power Sys)	Preferred Sales
			(Polymer Insulator	(Markan Barra Dav)	D (10 l
AU504	Insulators	Insulator, Line, Polymer	Assembly)	(Maclean Power Sys)	Preterred Sales
A0504	Insulators	Insulator, Line, Polymer	Mardware Assembly Only	(Maclean Power Sys)	Preferred Sales

		1		Lead Time	Date last updated: August 2
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
		Insulator, Station Post,			
A0502	Insulators	Porcelain	161kV (Porcelain)	(Hubbell), Victor, Lapp, NGK, Newell, Vanguard, Seves	Hubbell Power Systems
11	Contract Contractor		345/500kV (Porcelain)		
		Insulator, Station Post,	HI / EXTRA HIGH	CONTRACTORS CONTRACTORS ST	
A0502	Insulators	Porcelain	STRENGTH	Hubbell Victor Lapp NGK Newell Vanguard Seves	
11			230kV (Porcelain)		
		Insulator Station Post	STANDARD		
40502	Insulators	Porcelain	STRENGTH	(Hubbell) Victor Lann NGK Newell Vanguard Seves	Hubbell Power Systems
10502	insulators	Insulator Station Post	69kV 115kV	(nubben), victor, cupp, vicit, newen, vanguara, oeves	Hubbell I Owel Oystellis
40502	Inculatore	Porcelain	(Porcelain)	(Hubbell) Victor Lann NGK Newell Vanguard Sever	Hubball Power Systems
HUJUL	moulators	rorcciain	230kV (Porcelain) HI /	(nubber), victor, cupp, vicit, newer, vangaara, oeves	Hubbell I ower oystellis
		Insulator Station Post	EXTRA HIGH		
40502	Inculators	Perceloin	STDENCTH	Hubbell Vistor Long NCK Newell Verguard Seven	
AUJU2	Insuidiors	Forcelain	24 EkV and holow	hubbell, victor, Lapp,NGK, Newell, Valiguaru, Seves	
	Insulators	Descalaio	(Descelain)	(Versued) Vistor Leen NCK Neural Seven Hubbell	Destand Palas
	Insulators	Porcelain	(Porcelain)	(vanguard), victor, Lapp,IVGK, Newell, Seves , Hubbell	Preferred Sales
10500	In such that a second	Insulator, Station Post,	45144 220144	(Marlans Dawn Car)	Desferred Color
AU502	Insulators	Polymer	15KV - 230KV	(Maclean Power Sys)	Preferred Sales
	Interrupter	Interrupter, Josiyn		Josiyn	Rumin
	Interrupter	Switches LLS I		(Southern States)	Preferred Sales
	Interrupter	Switches LLS II		(Southern States)	Preferred Sales
	Interrupter	Whip		(Southern States)	Preterred Sales
	Interrupter	Interrupter		S&C	Curtis Stout
	Junction Box	Junction Boxes		MMR, Premier Control, SEL	All Junction Boxes – (2) weeks before Entergy's delivery date as stated on the PO
	Panel	Panel - Battery Switching		MMR, SEL, Premier Control	(4) weeks before Entergy's delivery date as stated on the PO.
	Panel	Panel - Communication rack		MMR, SEL, Premier Control	(3) weeks before Entergy's delivery date as stated on the PO.
M0101	Panel	Panel - AC & DC Cabinets		MMR, SEL, Premier Control, Peterson Panel	(4) weeks before Entergy's delivery date as stated on the PO.
	Panel	Panel - Breaker Line		MMR, SEL, Premier Control	(4) weeks before Entergy's delivery date as stated on the PO.
M0602	Panel	Panel - Bus Differential		MMR, SEL, Premier Control	Bus Diff/XFMR Diff/ Breaker Control/ACDC Breaker – (3) weeks before Entergy's delivery date as stated on the PO.
M1803	Panel	Panel - Line Protection		MMR, SEL, Premier Control	(4) weeks before Entergy's delivery date as stated on the PO.
	Panel	Panel - Meter		MMR, SEL, Premier Control	(4) weeks before Entergy's delivery date as stated on the PO.
		-		-	

				Lead Time	Date last updated: August 22
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
	Poles	Pole Caissons	T-Line - after approval	(Valmont)	Preferred Sales
TC0609	Poles	Pole, Concrete		(Valmont)	Preferred Sales
FC0608	Poles	Pole, Steel	after approval	Valmont)	Preferred Sales
N0701	P <mark>T</mark>	PT	15kV - 34.5kV	ABB Inc, GE, Ritz	
PN0701	PT	PT	69kv - 230kv	Hitachi Energy, GE, Trench,	
SN0903	Reactor	Reactor, Dry Type Shunt	Below 230kV	Hitachi Energy, Coil Innovations, Trench	
SN0902	Reactor	Reactor, Limiting		Hitachi Energy, Coil Innovations, Trench	
SN0904	Reactor	Reactor, Oil filled Shunt	230kV 500kV	Hitachi Energy, Prolec GE, MEPPI, Siemens, SMIT	
SN1002	Regulators	Regulator		Pennsylvania Transformers	Curtis Stout
	Relay	SEL Relays	SEL Relay	SEL	Power Connection
	Relay	SEL cables	Cable & Fiber	SEL	Power Connection
	RTU	ACS RTU - Peripherals	NTX-U20 & Upgrades	ACS (Automated Control Systems)	Ruffin & Associates
	RTU	ACS Cables	NTX cables	ACS (Automated Control Systems)	Ruffin & Associates
	RTU	GE Parts	Accessories & Cables	G.E. Grid Solutions	Perferred Sales
PM3002	RTU	RTU	IO cabinet standard RTU	G.E. Grid Solutions	Perferred Sales
PM3002	RTU	RTU - Kits & Parts	D400, D20, DNPIO Kits & Parts	G.E. Grid Solutions	Perferred Sales
	Rupter	Rupters/S&C ALDUTI 15 kV Vac		(S&C)	Curtis Stout Approval drawings 5 wks from issue date of po
SL1301	Sians	Signs - Entergy Substation Switchvard		Impco	Impco
	Signs	Signs - General		Stuart Irby	Stuart Irby
			1		

				Lead Time	Date last updated: August 22
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
C0401, SL0505	Structure	Steel	Substation, Octagonal	(Distran), Valmont	Distran
C0401, SL0505	Structure	Steel	Substation, Lattice	(Distran), Industrial Steel	Distran
	Structure	Steel	MISC Substation Steel	Distran, Industrial Steel	
	and the second se	Steel Standard and Tapered	Substation, existing		1.00000000
	Structure	Tubular	details	(Distran), Valmont	Distran
	a second s	Steel Standard and Tapered			
	Structure	Tubular	(Design Required)	(Distran), Valmont Note: * Pending approval	Distran
	and the second se	ASCO ATS (Automatic	and the second		
M3401	Switch	Transfer Switch)		Utility and Industrial Supply,LLC, WESCO	
			Switch group operated		
	Switch	Switch, T-Line	245kV and below	SEECO	Southern Utility Sales Agency
					Preferred Sales Approval drawings 4-6 wks from issue date
D1501	Switch	Switch, Disconnect	115 & 230kV Air Break	(Southern States), USCO, Pascor Atlantic	of po
					Preferred Sales Approval drawings 4-6 wks from issue date
SD1501	Switch	Switch, Disconnect	69kV - 230kV	(Southern States), USCO, Pascor Atlantic	of po
					Preferred Sales Approval drawings 4-6 wks from issue date
D1501	Switch	Switch, Disconnect	69kV Air Break	(Southern States), USCO, Pascor Atlantic	of po
-	0.11.1	Culture Discourse	AFIN DA FIN	(8- the State) 11000	Preterred Sales Approval drawings 4-8 wks from issue date
500001	Switch	Switch, Disconnect	15KV - 34.5KV	(Southern States), USCO	Orpo
D1502	Switch	Switch Disconnect	345/500kV	(Southern States) Pascor Atlantic	of no
101002	owner	Switch Disconnect	040/0000	(oounen oures), ruseo rusanie	Destand Calar
0701	Switch	Hookstick	15WV 34 5WV	(Southorn States) LISCO	Preterred Sales Approval drawings 4-6 wks from issue date
00101	Owner	TIOORBUCK	1587 - 54.587	(Southern States), 0000	
	Switch	Switch Fuse (SMD style)	15 kV	(S&C)	Curtis Stout Approval drawings 5 wks from issue date of po
		(2002 20)(2)			
D1601	Switch/Motor Operators	Motor Operator	Southern States MO	(Southern States)	Preferred Sales
	Switch/Motor Operators	Motor Operator	S&C MO	(S&C)	Curtis Stout Annroval drawings 5 w/s from issue date of no
	official and operators	SSVT: Station Service	000 110	1000	our do otour reproverent and any of the new issoe dure of po
N1101	Transformer	Voltage Transformer	230kV	Trench Hitachi Energy	
	Tansionner	SSVT: Station Service	Look	Henen, Hiddin Energy	
N1101	Transformer	Voltage Transformer	46kV -161kV	Trench Hitachi Energy	Hitachi 46
	i anaioi nei	ronaga Hanatonno		Tronen, mount chorgy	i inderi -v
	-				-
	1				
	-				
	-				
	1		1	1	

				Lead Time	Date last updated: August 22, 202
Purchase Spec.	Class	Description	Qualifier	Approved Manufacturer(s) ()-Preferred	Preferred Supplier
SN0103, SN0104	Transformer	Transformer, Auto	230kV and Above 100MVA	Hitachi Energy, MEPPI, Siemens, SMIT, Waukesha	
SN0102	Transformer	Transformer, Small Auto	below 230kv and 100MVA	(Waukesha), Hitachi Energy, Delta Star	Aertker Co. Approval drawings 18 wks from issue date of po
	Transrupter	Transrupter II		(S&C)	Curtis Stout Approval drawings 5 wks from issue date of po
PM0802	Trap Trench	Trap, Line Carrier		Trench (No other supplier approved) (Concast), Trenway, Old Castle	Curtis Stout Approval drawings 4-5 wks from issue date of po GHMR
PM0804	Tuner	Tuner, Line Carrier		Trench	Curtis Stout Approval drawings 4-5 wks from issue date of po

TWO-WINDING & AUTO-TRANSFORMERS RATED < 100MVA (3-phase) and HV $\leq 230 kV$

Production Facility & Location	Currently qualifying or already qualified	Maximum ratings a	pproved by Entergy	Capabilities reported by facility		
		MVA (3ø)	KV	MVA (3ø)	KV	
ABB / Crystal Springs, MS USA	qualified	50 (MS)	161 (MS)	~60 (MS)	161 (MS)	
Delta Star / Lynchburg, VA	qualified	100	230	~200	230	
Waukesha Electric (SPX), Goldsboro, NC & Waukesha, WI USA	qualified	80 (NC), 100 (WI)	230 (NC), 230 (WI)	~80 (NC), 800 (WI)	230 (NC), 345 (WI)	

AUTO-TRANSFORMERS RATED ≥ 100MVA (3-phase) or HV > 230kV

Production Facility & Location	Currently qualifying or already qualified	Maximum ratings a	pproved by Entergy	Capabilities reported by facility		
		MVA (3ø)	KV	MVA (3ø)	KV	
ABB / Varennes, Quebec, Canada; Guarulhos, Brazil;	qualified	1000 (Can), 500 (Br), 800 (Sp)	500 (Can), 500 (Br), 500 (Sp)	1200 (Can), 600 (Br), 800 (Sp)	765 (Can), 765 (Br),	
Cordoba, Spain		000(0p)	500 (52)	000 (Sp)	500 (Sp)	
Mitsubishi / Ako, Japan	qualified	~1000	500	~1500	1000+	
Siemens / Linz & Weiz, Austria; Nuremburg, Germany; Jundiai, Brazil; Bogota, Colombia	qualified	1000 (Aus, Ger), 800 (Br), 200 (Col)	500 (Aus, Ger, Br), 230 (Col)	2000 (Aus), 1100 (Ger), 1000 (Br), 250 (Col)	765 (Aus), 1000+ (Ger), 765 (Br), 345 (Col)	
SMIT / Nijmegen, Netherlands	qualified	~800	500	~1200	765	
Waukesha Electric (SPX), Waukesha, WI USA	qualified	~600	345	~800	345	

ATTACHMENT 6 ENTERGY LOADING DISTRICTS

			Γ				
State	County	Extreme				Extreme	Entergy
		Wind	Light	Medium	Heavy	Ice	Load
		mph	0			inches	Case
AR	Arkansas	100		М		1	LC-2
AR	Ashley	100		М		1	LC-2
AR	Baxter	100			Н	1	LC-1
AR	Benton	100			Н	1	LC-1
AR	Boone	100			Н	1	LC-1
AR	Bradley	100		М		1	LC-2
AR	Calhoun	100		М		1	LC-2
AR	Carroll	100			Н	1	LC-1
AR	Chicot	100		М		1	LC-2
AR	Clark	100	0		Η	1	LC-1
AR	Clay	100			Н	1	LC-1
AR	Cleburne	100			Н	1	LC-1
AR	Cleveland	100		М		1	LC-2
AR	Columbia	100		М		1	LC-2
AR	Conway	100			Н	1	LC-1
AR	Craighead	100		М		1	LC-2
AR	Crawford	100			Н	1	LC-1
AR	Crittenden	100		М		1	LC-2
AR	Cross	100		М		1	LC-2
AR	Dallas	100		М		1	LC-2
AR	Desha	100		М		1	LC-2
AR	Drew	100		М		1	LC-2
AR	Faulkner	100			Н	1	LC-1
AR	Franklin	100			Н	1	LC-1
AR	Fulton	100			Н	1	LC-1
AR	Garland	100			Н	1	LC-1
AR	Grant	100		М		1	LC-2
AR	Greene	100			Н	1	LC-1
AR	Hempstead	100			Н	1	LC-1
AR	Hot Spring	100			Н	1	LC-1
AR	Howard	100			Н	1	LC-1
AR	Independence	100	0		Н	1	LC-1
AR	Izard	100	0		Н	1	LC-1
AR	Jackson	100			Н	1	LC-1
AR	Jefferson	100		M		1	LC-2

			NESC District			.	
State	County	Extreme	T :- h 4	Mallana	Theorem	Extreme	Entergy
		wind	Lignt	Medium	Heavy	inches	Load
AP	Johnson	100			ц	1	LC1
	Lafavatta	100		M	п	1	LC-1
	Lalayette	100		IVI	ц	1	LC-2
	Lawience	100		м	п	1	LC-I
	Lee	100		M		1	LC-2
	Little Piver	100		IVI	ц	1	LC-2
	Little Kiver	100			п u	1	LC-I
	Logan	100		м	11	1	LC-1
AP	Madison	100		IVI	ц	1	LC-2
	Marion	100			 ц	1	LC-1
	Maller	100	-	M	- 11	1	LC-1
	Mississippi	100		M		1	LC-2
	Monroe	100		M		1	LC-2
	Montgomery	100		IVI	ц	1	LC-2
	Nevada	100		м	- 11	1	
	Newton	100		IVI	ц	1	LC-2
	Quachita	100		м	11	1	
	Borry	100		IVI	ц	1	LC-2
	Philling	100		м	- 11	1	
	Biko	100		IVI	ц	1	LC-2
	Poinsott	100		M	п	1	LC-I
	Polk	100		IVI	н	1	LC-2
AR	Pone	100			н	1	LC-1
	Prairie	100		м		1	LC-1
	Pulaski	100		IVI	н	1	LC-2
AR	Bandolph	100			н	1	LC-1
	St Francis	100		M	11	1	LC-1 LC-2
AR	Saline	100		NI.	н	1	LC-2
	Scott	100			н	1	LC-1
AR	Searcy	100			н	1	LC-1
AR	Sebastian	100			н	1	LC-1
AR	Sevier	100			H	1	LC-1
AR	Sharp	100			н	1	LC-1
AR	Stone	100			Н	1	LC-1
AR	Union	100		M		1	LC-2
AR	Van Buren	100			Н	1	LC-1
AR	Washington	100			Н	1	LC-1
AR	White	100			Н	1	LC-1
AR	Woodruff	100		M		1	LC-2
AR	Yell	100			Н	1	LC-1
MO	Dunklin	100			Н	1	LC-1
MO	New Madrid	100			Н	1	LC-1
MO	Oregon	100			H	1	LC-1
MO	Pemiscot	100			H	1	LC-1
MO	Stoddard	100			Н	1	LC-1
MO	Taney	100			Н	1	LC-1

			NESC District				
State	Parish	Extreme		1		Extreme	Entergy
		Wind	Light	Medium	Heavy	Ice	Load
		mph				inches	Case
LA	Acadia	150	L			0.5	LC-3D
LA	Allen	125	L			0.5	LC-3B
LA	Ascension	150	L			0.5	LC-3D
LA	Assumption	150	L			0.5	LC-3D
LA	Avoyelles	110	L			0.5	LC-3F
LA	Beauregard	125	L			0.5	LC-3B
LA	Bienville	100		M		0.75	LC-2D
LA	Bossier	100		Μ		0.75	LC-2D
LA	Calcasieu	150	L			0.5	LC-3D
LA	Caldwell	100		M		0.75	LC-2D
LA	Cameron	150	L			0.5	LC-3D
LA	Catahoula	100	L			0.5	LC-3E
LA	Claiborne	100		М		0.75	LC-2D
LA	Concordia	100	L			0.5	LC-3E
LA	Desoto	100		М		0.75	LC-2D
LA	East Baton Rouge	150	L			0.5	LC-3D
LA	East Carrol	100		М		0.75	LC-2D
LA	East Feliciana	125	L			0.5	LC-3B
LA	Evangeline	125	L			0.5	LC-3B
LA	Franklin	100		М		0.75	LC-2D
LA	Grant	100	L			0.75	LC-2C
LA	Iberia	150	L			0.5	LC-3D
LA	Iberville	150	L			0.5	LC-3D
LA	Jackson	100		М		0.75	LC-2D
LA	Jefferson	150	L			0.5	LC-3D
LA	Jefferson Davis	150	L			0.5	LC-3D
LA	Lafavette	150	L			0.5	LC-3D
LA	Lafourche	150	L			0.5	LC-3D
LA	Lasalle	100	L			0.75	LC-3C
LA	Lincoln	100		М		0.75	LC-2D
LA	Livingston	150	L			0.5	LC-3D
LA	Madison	100	L			0.75	LC-3C
LA	Morehouse	100		М		0.75	LC-2D
LA	Natchitoches	100		M		0.75	LC-2D
LA	Orleans	150	L			0.5	LC-3D
LA	Quachita	100		М		0.75	LC-2D
LA	Plaquemines	150	L			0.5	LC-3D
LA	Point Coupee	125	L			0.5	LC-3B
LA	Rapides	100	L			0.5	LC-3E
LA	Red River	100		М		0.75	LC-2D
LA	Richland	100		M	22	0.75	LC-2D
LA	Sabine	100		M		0.75	LC-2D
LA	St. Bernard	150	L			0.5	LC-3D
LA	St. Charles	150	L			0.5	LC-3D

			NESC District				
State	Parish	Extreme				Extreme	Entergy
		Wind	Light	Medium	Heavy	Ice	Load
		mph				inches	Case
LA	St. Helena	125	L			0.5	LC-3B
LA	St. James	150	L			0.5	LC-3D
LA	St. John the Baptist	150	L			0.5	LC-3D
LA	St. Landry	125	L			0.5	LC-3B
LA	St. Martin, North	150	L			0.5	LC-3D
LA	St. Martin, South	150	L			0.5	LC-3D
LA	St. Mary	150	L			0.5	LC-3D
LA	St. Tammany	150	L			0.5	LC-3D
LA	Tangipahoa	150	L			0.5	LC-3D
LA	Tensas	100	L			0.5	LC-3E
LA	Terrebonne	150	L			0.5	LC-3D
LA	Union	100		М		0.75	LC-2D
LA	Vermillion	150	L			0.5	LC-3D
LA	Vernon	100	L			0.5	LC-3E
LA	Washington	125	L			0.5	LC-3B
LA	Webster	100		М		0.75	LC-2D
LA	West Baton Rouge	150	L			0.5	LC-3D
LA	West Carrol	100		Μ		0.75	LC-2D
LA	West Feliciana	125	L			0.5	LC-3B
LA	Winn	100		М		0.75	LC-2D
			NESC District				
-------	-----------------	---------	---------------	--------	-------	---------	---------
State	County	Extreme				Extreme	Entergy
		Wind	Light	Medium	Heavy	Ice	Load
		mph				inches	Case
MS	Adams	100	L			0.5	LC-3E
MS	Amite	110	L			0.5	LC-3F
MS	Attala	100	L			0.5	LC-3E
MS	Benton	100		M		1	LC-2
MS	Bolivar	100		Μ		1	LC-2
MS	Calhoun	100		М		1	LC-2
MS	Carrol	100		M		1	LC-2
MS	Chickasaw	100		Μ		1	LC-2
MS	Choctaw	100		М		1	LC-2
MS	Claiborne	100	L			0.5	LC-3E
MS	Clay	100		М		1	LC-2
MS	Coahoma	100		M		1	LC-2
MS	Copiah	100	L			0.5	LC-3E
MS	Covington	110	L			0.5	LC-3F
MS	Desoto	100		М		1	LC-2
MS	Franklin	100	L			0.5	LC-3E
MS	Grenada	100	•	М		1	LC-2
MS	Hinds	100	L			0.5	LC-3E
MS	Holmes	100		M		1	LC-2
MS	Humphreys	100		M		1	LC-2
MS	Issaquena	100	L			1	LC-3G
MS	Jefferson	100	L			0.5	LC-3E
MS	Jefferson Davis	110	L			0.5	LC-3F
MS	Lafayette	100		М		1	LC-2
MS	Lawrence	110	L			0.5	LC-3F
MS	Leake	100	L			0.5	LC-3E
MS	Leflore	100		М		1	LC-2
MS	Lincoln	110	L			0.5	LC-3F
MS	Madison	100	L			0.5	LC-3E
MS	Marion	110	L			0.5	LC-3F
MS	Marshall	100		М		1	LC-2
MS	Montgomery	100		M		1	LC-2
MS	Neshoba	100	L			0.5	LC-3E
MS	Newton	100	L			0.5	LC-3E
MS	Panola	100		M	, .	1	LC-2
MS	Pike	110	L			0.5	LC-3F
MS	Ponotoc	100		Μ		1	LC-2
MS	Quitman	100		Μ		1	LC-2
MS	Rankin	100	L			0.5	LC-3E
MS	Scott	100	L			0.5	LC-3E
MS	Sharkey	100	L			0.75	LC-3C
MS	Simpson	100	L			0.5	LC-3E
MS	Smith	110	L			0.5	LC-3F

			NESC District				
State	County	Extreme				Extreme	Entergy
		Wind	Light	Medium	Heavy	Ice	Load
		mph				inches	Case
MS	Sunflower	100		M		1	LC-2
MS	Tallahatchie	100		M		1	LC-2
MS	Tate	100		Μ		1	LC-2
MS	Tippah	100		Μ		1	LC-2
MS	Tunica	100		Μ		1	LC-2
MS	Union	100		Μ		1	LC-2
MS	Walthall	110	L			0.5	LC-3F
MS	Warren	100	L			0.5	LC-3E
MS	Washington	100		Μ		1	LC-2
MS	Webster	100		M		1	LC-2
MS	Wilkinson	110	L			0.5	LC-3F
MS	Winston	100	L			0.5	LC-3E
MS	Yalobusha	100		Μ		1	LC-2
MS	Yazoo	100	L			0.75	LC-3C

			NESC District				
State	County	Extreme			Extreme	Entergy	
		Wind	Light	Medium	Heavy	Ice	Load
		mph				inches	Case
TX	Angelina	100		Μ		0.75	LC-2D
TX	Brazos	100		M		0.75	LC-2D
TX	Burleson	100		M		0.5	LC-2B
TX	Chambers	150	L			0.5	LC-3D
TX	Galveston	150	L			0.5	LC-3D
TX	Grimes	100		Μ		0.75	LC-2D
TX	Hardin	125	L			0.5	LC-3B
TX	Harris	125	L			0.5	LC-3B
TX	Houston	100		M		0.75	LC-2D
TX	Jasper	125		Μ		0.5	LC-2C
TX	Jefferson	150	L			0.5	LC-3D
TX	Leon	100		M		0.75	LC-2D
TX	Liberty	125	L			0.5	LC-3B
TX	Limestone	100		М		0.75	LC-2D
TX	Madison	100		Μ		0.75	LC-2D
TX	Montgomery	110		М		0.5	LC-2A
TX	Nacoqdoches	100		Μ		0.75	LC-2D
TX	Newton	125		M		0.5	LC-2C
TX	Orange	150	L			0.5	LC-3D
TX	Polk	110		Μ		0.75	LC-2E
TX	Robertson	100		Μ		0.75	LC-2D
TX	Sabine	100		Μ		0.75	LC-2D
TX	San Augustine	100		Μ		0.75	LC-2D
TX	San Jacinto	100		М		0.75	LC-2D
TX	Trinity	100		Μ		0.75	LC-2D
TX	Tyler	110		M		0.75	LC-2E
TX	Walker	100		M		0.75	LC-2D
TX	Waller	110	L			0.5	LC-3F
TX	Washington	100	L			0.5	LC-3E

Appendix 2 – HV Transmission Page 174

*** END OF APPENDIX 2***